{"title":"1.4 Quantum computing - the next challenge in circuit and system design","authors":"L. Vandersypen, A. Leeuwenhoek","doi":"10.1109/ISSCC.2017.7870244","DOIUrl":null,"url":null,"abstract":"The challenge of quantum computing is that quantum bits are extremely fragile and their state is easily perturbed by environmental fluctuations. However, recent theoretical and experimental advances have made it clear that the resulting errors can in principle be corrected. What it takes is a system containing thousands or millions of quantum bits operating at ultra-low temperatures, that must be interfaced using complex classical mixed-signal and microwave circuits for read-out and control. By comparison, today’s practical demonstrations involve no more than a dozen quantum bits controlled by bulky instrumentation that is not scalable.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
The challenge of quantum computing is that quantum bits are extremely fragile and their state is easily perturbed by environmental fluctuations. However, recent theoretical and experimental advances have made it clear that the resulting errors can in principle be corrected. What it takes is a system containing thousands or millions of quantum bits operating at ultra-low temperatures, that must be interfaced using complex classical mixed-signal and microwave circuits for read-out and control. By comparison, today’s practical demonstrations involve no more than a dozen quantum bits controlled by bulky instrumentation that is not scalable.