{"title":"Low-power clock trees for CPUs","authors":"Dongjin Lee, Myung-Chul Kim, I. Markov","doi":"10.1109/ICCAD.2010.5653738","DOIUrl":null,"url":null,"abstract":"Clock networks contribute a significant fraction of dynamic power and can be a limiting factor in high-performance CPUs and SoCs. The need for multi-objective optimization over a large parameter space and the increasing impact of process variation make clock network synthesis particularly challenging. In this work, we develop new modeling techniques and algorithms, as well as a methodology, for clock power optimization subject to tight skew constraints in the presence of process variations. Key contributions include a new time-budgeting step for clock-tree tuning, accurate optimizations that satisfy budgets, modeling and optimization of variational skew. Our implementation, Contango 2.0, outperforms the winners of the ISPD 2010 clock-network synthesis contest on 45nm benchmarks from Intel and IBM.","PeriodicalId":344703,"journal":{"name":"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"1 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2010.5653738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Clock networks contribute a significant fraction of dynamic power and can be a limiting factor in high-performance CPUs and SoCs. The need for multi-objective optimization over a large parameter space and the increasing impact of process variation make clock network synthesis particularly challenging. In this work, we develop new modeling techniques and algorithms, as well as a methodology, for clock power optimization subject to tight skew constraints in the presence of process variations. Key contributions include a new time-budgeting step for clock-tree tuning, accurate optimizations that satisfy budgets, modeling and optimization of variational skew. Our implementation, Contango 2.0, outperforms the winners of the ISPD 2010 clock-network synthesis contest on 45nm benchmarks from Intel and IBM.