{"title":"Nonsingular terminal sliding mode control for time-delayed fractional-order T-S fuzzy systems based on finite-time scheme","authors":"Xiaona Song, Shuai Song, Mi Wang","doi":"10.1109/YAC.2018.8406439","DOIUrl":null,"url":null,"abstract":"In this paper, nonsingular terminal sliding mode control for fractional-order T-S fuzzy time-delay systems is discussed. The parameter uncertainty and external disturbance are included in the system model, meanwhile the controller design is implemented based on the finite-time concept. Firstly, a novel nonsingular terminal sliding surface which is suitable for the time-delayed fractional-order T-S fuzzy systems is proposed. It is proved that once the state trajectories of the system reach to the proposed sliding surface, they will be converged to the origin within a given finite time. Secondly, in terms of the established terminal sliding surface, a novel fractional-order sliding mode control law is introduced, which can force the closed loop dynamic error system trajectories to reach the terminal sliding surface over a finite time. Finally, using the Lyapunov stability theorem, the stability of the proposed method are proved. The proposed method is implemented for control of time-delayed fractional-order Permanent Magnetic Synchronous Motor chaotic systems with uncertain parameter and external disturbance to verify the effectiveness of the proposed fractional order nonsingular terminal sliding mode controller.","PeriodicalId":226586,"journal":{"name":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2018.8406439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, nonsingular terminal sliding mode control for fractional-order T-S fuzzy time-delay systems is discussed. The parameter uncertainty and external disturbance are included in the system model, meanwhile the controller design is implemented based on the finite-time concept. Firstly, a novel nonsingular terminal sliding surface which is suitable for the time-delayed fractional-order T-S fuzzy systems is proposed. It is proved that once the state trajectories of the system reach to the proposed sliding surface, they will be converged to the origin within a given finite time. Secondly, in terms of the established terminal sliding surface, a novel fractional-order sliding mode control law is introduced, which can force the closed loop dynamic error system trajectories to reach the terminal sliding surface over a finite time. Finally, using the Lyapunov stability theorem, the stability of the proposed method are proved. The proposed method is implemented for control of time-delayed fractional-order Permanent Magnetic Synchronous Motor chaotic systems with uncertain parameter and external disturbance to verify the effectiveness of the proposed fractional order nonsingular terminal sliding mode controller.