On Sensor Network Localization Exploiting Topological Constraints*

A. Speranzon, S. Shivkumar, R. Ghrist
{"title":"On Sensor Network Localization Exploiting Topological Constraints*","authors":"A. Speranzon, S. Shivkumar, R. Ghrist","doi":"10.23919/ACC45564.2020.9147982","DOIUrl":null,"url":null,"abstract":"We present a novel approach to localize an unknown planar sensor network based on sparse sampling of partially observable paths traversed by moving agents. The problem is inspired by mapping the geometry of a building floorplan via \"uncooperative sensing\", using data from camera feeds and other tracking-capable sensors. Unique challenges include having no knowledge of sensor placement, coverage or their extrinsic parameters nor the knowledge of the motion of the people within a floorplan. The methods used are, at first, topological, to build a combinatorial model with the appropriate topology. This model is then augmented to include weak geometric information, and optimization techniques are used to approximate the domain. Topological information is captured within the optimization problem to constrain the solution.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"88 S5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC45564.2020.9147982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel approach to localize an unknown planar sensor network based on sparse sampling of partially observable paths traversed by moving agents. The problem is inspired by mapping the geometry of a building floorplan via "uncooperative sensing", using data from camera feeds and other tracking-capable sensors. Unique challenges include having no knowledge of sensor placement, coverage or their extrinsic parameters nor the knowledge of the motion of the people within a floorplan. The methods used are, at first, topological, to build a combinatorial model with the appropriate topology. This model is then augmented to include weak geometric information, and optimization techniques are used to approximate the domain. Topological information is captured within the optimization problem to constrain the solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拓扑约束的传感器网络定位研究*
我们提出了一种基于移动代理所穿越的部分可观察路径的稀疏采样来定位未知平面传感器网络的新方法。这个问题的灵感来自于通过“非合作感应”绘制建筑平面图的几何形状,使用来自摄像头馈送和其他具有跟踪功能的传感器的数据。独特的挑战包括不了解传感器的位置、覆盖范围或其外部参数,也不了解平面图中人们的运动情况。首先,所使用的方法是拓扑学的,以构建具有适当拓扑结构的组合模型。然后对该模型进行扩充,使其包含弱几何信息,并使用优化技术来近似该域。在优化问题中捕获拓扑信息以约束解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metric Interval Temporal Logic based Reinforcement Learning with Runtime Monitoring and Self-Correction Boundary Control of Coupled Hyperbolic PDEs for Two-dimensional Vibration Suppression of a Deep-sea Construction Vessel Localizing Data Manipulators in Distributed Mode Shape Identification of Power Systems Boundary prescribed–time stabilization of a pair of coupled reaction–diffusion equations An Optimization-Based Iterative Learning Control Design Method for UAV’s Trajectory Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1