{"title":"Automatic generation of Analog Hardware Description Language (AHDL) code from cell culture images","authors":"A. Yúfera, Estefania Gallego","doi":"10.1109/IPTA.2010.5586770","DOIUrl":null,"url":null,"abstract":"This paper presents a computer tool for automatic analysis of cell culture images. The program allows the extraction of relevant information from biological images for pre and post system analysis. In particular, this tool is being used for electrical characterization of electrode-solution-cell systems in which bio-impedance is the main parameter to be known. The correct modeling of this kind of systems enables both electronic system characterization for circuit design specifications and data decoding from measurements. The developed program can be used in cell culture image processing for geographic information extraction and sensor sizing, generating cell count and Analog Hardware Description Language (AHDL) equivalent circuits useful for whole system electrical simulations.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a computer tool for automatic analysis of cell culture images. The program allows the extraction of relevant information from biological images for pre and post system analysis. In particular, this tool is being used for electrical characterization of electrode-solution-cell systems in which bio-impedance is the main parameter to be known. The correct modeling of this kind of systems enables both electronic system characterization for circuit design specifications and data decoding from measurements. The developed program can be used in cell culture image processing for geographic information extraction and sensor sizing, generating cell count and Analog Hardware Description Language (AHDL) equivalent circuits useful for whole system electrical simulations.