An Energy-Efficient Mixed-Signal Neuron for Inherently Error-Resilient Neuromorphic Systems

Baibhab Chatterjee, P. Panda, Shovan Maity, K. Roy, Shreyas Sen
{"title":"An Energy-Efficient Mixed-Signal Neuron for Inherently Error-Resilient Neuromorphic Systems","authors":"Baibhab Chatterjee, P. Panda, Shovan Maity, K. Roy, Shreyas Sen","doi":"10.1109/ICRC.2017.8123656","DOIUrl":null,"url":null,"abstract":"This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit- level implementation of the MS-N in 65 nm CMOS technology exhibits 2-3 orders of magnitude better energy-efficiency over Dig-N for neuromorphic computing applications - especially at low frequencies due to the high leakage currents from many transistors in Dig-N. The inherent error- resiliency of CNN is exploited to handle the thermal and flicker noise of MS-N. A system-level analysis using a cohesive circuit-algorithmic framework on MNIST and CIFAR-10 datasets demonstrate an increase of 3% in worst-case classification error for MNIST when the integrated noise power in the bandwidth is ~ 1 μV².","PeriodicalId":125114,"journal":{"name":"2017 IEEE International Conference on Rebooting Computing (ICRC)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2017.8123656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit- level implementation of the MS-N in 65 nm CMOS technology exhibits 2-3 orders of magnitude better energy-efficiency over Dig-N for neuromorphic computing applications - especially at low frequencies due to the high leakage currents from many transistors in Dig-N. The inherent error- resiliency of CNN is exploited to handle the thermal and flicker noise of MS-N. A system-level analysis using a cohesive circuit-algorithmic framework on MNIST and CIFAR-10 datasets demonstrate an increase of 3% in worst-case classification error for MNIST when the integrated noise power in the bandwidth is ~ 1 μV².
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固有错误弹性神经形态系统的节能混合信号神经元
本文介绍了卷积神经网络(CNN)的混合信号神经元(MS-N)的设计和分析,并将其与数字神经元(Dig-N)在工作频率、功率和噪声方面的性能进行了比较。对于神经形态计算应用,采用65nm CMOS技术实现的MS-N的电路级能效比Dig-N高2-3个数量级,特别是在低频时,由于Dig-N中许多晶体管的高泄漏电流。利用CNN固有的误差弹性来处理MS-N的热噪声和闪烁噪声。采用内聚电路算法框架对MNIST和CIFAR-10数据集进行了系统级分析,结果表明,当带宽内的集成噪声功率为~ 1 μV²时,MNIST的最坏情况分类误差提高了3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalize or Die: Operating Systems Support for Memristor-Based Accelerators Achieving Swarm Intelligence with Spiking Neural Oscillators Generating Sparse Representations Using Quantum Annealing: Comparison to Classical Algorithms Physical Constraints on Quantum Circuits A Comparison between Single Purpose and Flexible Neuromorphic Processor Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1