{"title":"3.4-mW common-gate and current-reused UWB LNA","authors":"Ji-Young Lee, Hyunkyu Park, Ho-Jun Chang, T. Yun","doi":"10.1109/SIRF.2012.6160116","DOIUrl":null,"url":null,"abstract":"A common-gate (CG) low-noise amplifier using the current-reused technique is proposed for both ultra-wideband and low-power consumption. The CG amplifier, employed at the input stage, enables wide-band input matching with low transconductance and the frequency-independent noise figure (NF), compared to the common-source amplifier. The current-reused technique is adopted in order to reduce the power dissipation while achieving a reasonable power gain. Furthermore, the shunt and series peaking technique is adopted for a wide bandwidth. The proposed LNA obtains a 3-dB bandwidth from 2.4 to 11.2 GHz, a maximum power gain of 14.8 dB, a minimum NF of 3.9 dB, and an IIP3 of -11.5 dBm while consuming 3.4 mW from a 1.5 V supply. A 0.18-μm CMOS process is utilized for the fabrication.","PeriodicalId":339730,"journal":{"name":"2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIRF.2012.6160116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A common-gate (CG) low-noise amplifier using the current-reused technique is proposed for both ultra-wideband and low-power consumption. The CG amplifier, employed at the input stage, enables wide-band input matching with low transconductance and the frequency-independent noise figure (NF), compared to the common-source amplifier. The current-reused technique is adopted in order to reduce the power dissipation while achieving a reasonable power gain. Furthermore, the shunt and series peaking technique is adopted for a wide bandwidth. The proposed LNA obtains a 3-dB bandwidth from 2.4 to 11.2 GHz, a maximum power gain of 14.8 dB, a minimum NF of 3.9 dB, and an IIP3 of -11.5 dBm while consuming 3.4 mW from a 1.5 V supply. A 0.18-μm CMOS process is utilized for the fabrication.