Support vector machines based composite kernel

Dingkun Ma, Xinquan Yang, Yin Kuang
{"title":"Support vector machines based composite kernel","authors":"Dingkun Ma, Xinquan Yang, Yin Kuang","doi":"10.1109/ICCPS.2015.7454194","DOIUrl":null,"url":null,"abstract":"In order to raise the adapbility of SVM classification to the specific dataset, a composite kernel is proposed and introduced into SVM, and the parameters are optimized according to “Fisher Discriminant” and “Kernel Alignment”, to maximize the class separability in the empirical feature space and, make composite kernel to be more relevant for the dataset and adapt itself by adjusting its composed coefficient parameters, thus allowing more flexibility in the kernel choice. The performance of support vector machines based composite kernel (CK-SVM) is extensively evaluated on five UCI standard datasets, at the same time, we compare CK-SVM with other existing method and get convincing results, which reveal that the proposed method is a robust and promising classifier.","PeriodicalId":319991,"journal":{"name":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2015.7454194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to raise the adapbility of SVM classification to the specific dataset, a composite kernel is proposed and introduced into SVM, and the parameters are optimized according to “Fisher Discriminant” and “Kernel Alignment”, to maximize the class separability in the empirical feature space and, make composite kernel to be more relevant for the dataset and adapt itself by adjusting its composed coefficient parameters, thus allowing more flexibility in the kernel choice. The performance of support vector machines based composite kernel (CK-SVM) is extensively evaluated on five UCI standard datasets, at the same time, we compare CK-SVM with other existing method and get convincing results, which reveal that the proposed method is a robust and promising classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的复合核
为了提高支持向量机分类对特定数据集的适应性,提出并在支持向量机中引入复合核,并根据“Fisher判别法”和“核对准法”对参数进行优化,最大限度地提高经验特征空间中的类可分性,并通过调整复合核的组成系数参数,使复合核与数据集的相关性更强,自适应能力更强,从而使核的选择更灵活。在5个UCI标准数据集上对基于支持向量机的复合核支持向量机(CK-SVM)进行了广泛的性能评估,同时将CK-SVM与其他现有方法进行了比较,得到了令人信服的结果,表明该方法是一种鲁棒的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A matching algorithm based on global viewpoint difference rectification for framework imagery Design of microstrip array antenna for angle measurement based on dual-baseline method Throwing-mine detection based on azimuth coherence Analysis and design of dual-feed circularly polarized U-slot microstrip antennas P2P flow classification based on wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1