{"title":"Multiresolution sphere packing tree: a hierarchical multiresolution 3D data structure","authors":"Jiro Inoue, A. J. Stewart","doi":"10.1145/1364901.1364954","DOIUrl":null,"url":null,"abstract":"Sphere packing arrangements are frequently found in nature, exhibiting efficient space-filling and energy minimization properties. Close sphere packings provide a tight, uniform, and highly symmetric spatial sampling at a single resolution. We introduce the Multiresolution Sphere Packing Tree (MSP-tree): a hierarchical spatial data structure based on sphere packing arrangements suitable for 3D space representation and selective refinement. Compared to the commonly used octree, MSP-tree offers three advantages: a lower fanout (a factor of four compared to eight), denser packing (about 24% denser), and persistence (sphere centers at coarse resolutions persist at finer resolutions). We present MSP-tree both as a region-based approach that describes the refinement mechanism succintly and intuitively, and as a lattice-based approach better suited for implementation. The MSP-tree offers a robust, highly symmetric tessellation of 3D space with favorable image processing properties.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1364901.1364954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Sphere packing arrangements are frequently found in nature, exhibiting efficient space-filling and energy minimization properties. Close sphere packings provide a tight, uniform, and highly symmetric spatial sampling at a single resolution. We introduce the Multiresolution Sphere Packing Tree (MSP-tree): a hierarchical spatial data structure based on sphere packing arrangements suitable for 3D space representation and selective refinement. Compared to the commonly used octree, MSP-tree offers three advantages: a lower fanout (a factor of four compared to eight), denser packing (about 24% denser), and persistence (sphere centers at coarse resolutions persist at finer resolutions). We present MSP-tree both as a region-based approach that describes the refinement mechanism succintly and intuitively, and as a lattice-based approach better suited for implementation. The MSP-tree offers a robust, highly symmetric tessellation of 3D space with favorable image processing properties.