Latent factor analysis for low-dimensional implicit preference prediction

Zili Zhou, Guandong Xu, Xiao Zhu, S. Liu
{"title":"Latent factor analysis for low-dimensional implicit preference prediction","authors":"Zili Zhou, Guandong Xu, Xiao Zhu, S. Liu","doi":"10.1109/BESC.2017.8256380","DOIUrl":null,"url":null,"abstract":"User preference prediction aims to predict a users future preferences on a large number of items according to his/her preference history. To achieve this goal, many models have been proposed, but mainly for explicit preference data, such as 5-star ratings. Nevertheless, real-world data are often in implicit format, such as purchase action, and the number of items is not always large. In this paper, we demonstrate the use of latent factor models for solving the task of predicting user preferences on implicit and low-dimensional dataset.","PeriodicalId":142098,"journal":{"name":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2017.8256380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

User preference prediction aims to predict a users future preferences on a large number of items according to his/her preference history. To achieve this goal, many models have been proposed, but mainly for explicit preference data, such as 5-star ratings. Nevertheless, real-world data are often in implicit format, such as purchase action, and the number of items is not always large. In this paper, we demonstrate the use of latent factor models for solving the task of predicting user preferences on implicit and low-dimensional dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低维内隐偏好预测的潜在因子分析
用户偏好预测的目的是根据用户的偏好历史,预测用户未来对大量物品的偏好。为了实现这一目标,已经提出了许多模型,但主要是针对明确的偏好数据,例如5星评级。然而,现实世界的数据通常采用隐式格式,例如购买行为,而且项目的数量并不总是很大。在本文中,我们展示了使用潜在因素模型来解决在隐式和低维数据集上预测用户偏好的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IBM data governance solutions Causalities among momentum, transparency and media in China Can Bayesian poisson tensor factorization automatically extract interesting events from massive media reports? The influence of big data and informatization on tourism industry Discover social relations and activities from ancient Chinese history book Zuo Zhuan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1