High temperature full-field strain measurement based on digital image correlation during arc welding

X. Zhou, H. B. Chen, J. Chen, S. B. Chen, Zhili Feng
{"title":"High temperature full-field strain measurement based on digital image correlation during arc welding","authors":"X. Zhou, H. B. Chen, J. Chen, S. B. Chen, Zhili Feng","doi":"10.1109/ARSO.2016.7736282","DOIUrl":null,"url":null,"abstract":"Experiments for measuring high temperature full-field strain were conducted during GTAW welding process using digital image correlation (DIC) technology. A special visual sensor system was equipped with image acquisition module. In order to reduce the influence of intense arc interference, a special laser-based illumination and filtering system was utilized. The in situ total strain close to the fusion line was measured during arc welding process. According to the total strain measured by DIC method and thermal strain calculated by the coefficient of thermal expansion, the mechanical strain was obtained, illustrating the sum of elastic and plastic strain distribution and deformation in the heated affected zone of the joint. Results showed that there remained compressive strain in both horizontal and vertical direction near the welding joint after welding. It demonstrated that full-field strain measurement could be achieved by DIC method during in situ arc welding.","PeriodicalId":403924,"journal":{"name":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO.2016.7736282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Experiments for measuring high temperature full-field strain were conducted during GTAW welding process using digital image correlation (DIC) technology. A special visual sensor system was equipped with image acquisition module. In order to reduce the influence of intense arc interference, a special laser-based illumination and filtering system was utilized. The in situ total strain close to the fusion line was measured during arc welding process. According to the total strain measured by DIC method and thermal strain calculated by the coefficient of thermal expansion, the mechanical strain was obtained, illustrating the sum of elastic and plastic strain distribution and deformation in the heated affected zone of the joint. Results showed that there remained compressive strain in both horizontal and vertical direction near the welding joint after welding. It demonstrated that full-field strain measurement could be achieved by DIC method during in situ arc welding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数字图像相关的弧焊高温全场应变测量
采用数字图像相关(DIC)技术对GTAW焊接过程中的高温全场应变进行了测量实验。一种特殊的视觉传感器系统配备了图像采集模块。为了减小强电弧干扰的影响,采用了一种特殊的激光照明滤波系统。在电弧焊过程中,测量了熔合线附近的原位总应变。根据DIC法测得的总应变和热膨胀系数计算得到的热应变,得到力学应变,说明接头热影响区内弹塑性应变分布和变形的总和。结果表明:焊接后焊缝附近水平方向和垂直方向均存在压应变;结果表明,采用DIC方法可以实现原位电弧焊过程中的全场应变测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The preliminary analysis on the laws of robotics in Japan — Using automated vehicles as examples Responsibility in the age of autonomous machines The selection of arc spectral line of interest based on improved K-medoids algorithm Socializing with robots: Human-robot interactions within a virtual environment An ear plate reinforced ring welding robot system with intelligent recognition function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1