FaceShapeGene: A disentangled shape representation for flexible face image editing

Sen-Zhe Xu , Hao-Zhi Huang , Fang-Lue Zhang , Song-Hai Zhang
{"title":"FaceShapeGene: A disentangled shape representation for flexible face image editing","authors":"Sen-Zhe Xu ,&nbsp;Hao-Zhi Huang ,&nbsp;Fang-Lue Zhang ,&nbsp;Song-Hai Zhang","doi":"10.1016/j.gvc.2021.200023","DOIUrl":null,"url":null,"abstract":"<div><p>How do I look if I have the same nose shape as my favorite star? Existing methods for face image manipulation generally focus on modifying predefined facial attributes, editing expressions and changing image styles, where users cannot control the shapes of specific semantic facial parts freely in the generated face image. The facial part shapes are described by their geometries and need to be controlled by continuously generating geometric parameters. Therefore, the existing methods that work with discretely labelled attributes are not applicable on this task. In this paper, we propose a novel approach to learn the disentangled shape representation for a face image, namely the <em>FaceShapeGene</em>, which encodes the shape information of the semantic facial parts into separate chunks in the latent space. It allows users to freely recombine the part-wise latent chunks of a face image from other individuals to transfer a specified facial part shape, just like gene editing. Experimental results on several tasks demonstrate that the proposed <em>FaceShapeGene</em> representation correctly disentangles the shape features of different semantic parts. Comparisons to existing methods show the superiority of the proposed method on facial parts editing tasks.</p></div>","PeriodicalId":100592,"journal":{"name":"Graphics and Visual Computing","volume":"4 ","pages":"Article 200023"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gvc.2021.200023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphics and Visual Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666629421000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How do I look if I have the same nose shape as my favorite star? Existing methods for face image manipulation generally focus on modifying predefined facial attributes, editing expressions and changing image styles, where users cannot control the shapes of specific semantic facial parts freely in the generated face image. The facial part shapes are described by their geometries and need to be controlled by continuously generating geometric parameters. Therefore, the existing methods that work with discretely labelled attributes are not applicable on this task. In this paper, we propose a novel approach to learn the disentangled shape representation for a face image, namely the FaceShapeGene, which encodes the shape information of the semantic facial parts into separate chunks in the latent space. It allows users to freely recombine the part-wise latent chunks of a face image from other individuals to transfer a specified facial part shape, just like gene editing. Experimental results on several tasks demonstrate that the proposed FaceShapeGene representation correctly disentangles the shape features of different semantic parts. Comparisons to existing methods show the superiority of the proposed method on facial parts editing tasks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FaceShapeGene:用于灵活人脸图像编辑的解纠缠形状表示
如果我的鼻子形状和我最喜欢的明星一样,我看起来会怎么样?现有的人脸图像处理方法一般侧重于修改预定义的人脸属性、编辑表情和改变图像样式,用户无法在生成的人脸图像中自由控制特定语义面部部位的形状。面部部位的形状由其几何形状来描述,需要通过不断生成几何参数来控制。因此,处理离散标记属性的现有方法不适用于此任务。在本文中,我们提出了一种新的方法来学习人脸图像的解纠缠形状表示,即FaceShapeGene,该方法将语义面部部位的形状信息编码成潜在空间中的独立块。它允许用户自由地重新组合来自其他人的面部图像的部分潜在块,以转移特定的面部部位形状,就像基因编辑一样。几个任务的实验结果表明,所提出的FaceShapeGene表示正确地分离了不同语义部分的形状特征。通过与现有方法的比较,表明了该方法在面部部分编辑任务中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Geometric models for plant leaf area estimation from 3D point clouds: A comparative study Efficient structuring of the latent space for controllable data reconstruction and compression Locally-guided neural denoising Editorial Note
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1