Effect of the laser parameters, epoxy mold compound properties and mold tool surface finishing on mark legibility of encapsulated IC package

Lim Ming Siong, Chai Yuan Tat
{"title":"Effect of the laser parameters, epoxy mold compound properties and mold tool surface finishing on mark legibility of encapsulated IC package","authors":"Lim Ming Siong, Chai Yuan Tat","doi":"10.1109/EPTC.2018.8654347","DOIUrl":null,"url":null,"abstract":"Changing of quality requirement in manufacturing technologies has to be followed by an adaption of material and process parameters. With the rapid emerging vision inspection technologies, 100% automated optical inspection as quality firewall is always a preferred option to pursue. In the case of transition from human to automated optical inspection to enhance defect detectability, the adaption effort is high due to different capabilities between human and machines on observation and interpretation of the criteria. This will strongly affect the justification of acceptance level which will subsequently cause over or under rejection. For encapsulated IC, the challenges are not only on the ability to detect the defect but also to recognize the laser marking character printed on the surface of the mold compound, which are used as traceability and identification purpose.A theoretical concept is being described to get a grasp of the occurring mechanism. From laser mark aspect, respective factors such as marking depth range coupled with correct marking size with respect to the field of view (FOV) are identified as major contributor for mark legibility. From material point of view, the compatibility of wax type (ratio of hydrophilic and hydrophobic parts) towards multi aromatic resin (MAR) or multifunctional resin (MFR) is identified as the cause of the flow mark or wax stain which eventually contribute the noise of visual inspection. Also from material aspect, types of flame retardant either metal hydroxide or organic phosphorous cause low curability which affects the molded package surface evenness eventually affect visual inspection results. From mold tool aspect, the range of lower roughness average (Ra) of the Electrical Discharge Surface (EDM) mold cavity surface is preferred for better mark legibility. At the end, a proposal is given on parameters, material and tool set to get the best encapsulated IC package surfaces with clear and legible marking. The constraints and corresponding potential risks are also discussed in this paper in order to achieve the best results yet not induce other negative impact.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"41 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2018.8654347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Changing of quality requirement in manufacturing technologies has to be followed by an adaption of material and process parameters. With the rapid emerging vision inspection technologies, 100% automated optical inspection as quality firewall is always a preferred option to pursue. In the case of transition from human to automated optical inspection to enhance defect detectability, the adaption effort is high due to different capabilities between human and machines on observation and interpretation of the criteria. This will strongly affect the justification of acceptance level which will subsequently cause over or under rejection. For encapsulated IC, the challenges are not only on the ability to detect the defect but also to recognize the laser marking character printed on the surface of the mold compound, which are used as traceability and identification purpose.A theoretical concept is being described to get a grasp of the occurring mechanism. From laser mark aspect, respective factors such as marking depth range coupled with correct marking size with respect to the field of view (FOV) are identified as major contributor for mark legibility. From material point of view, the compatibility of wax type (ratio of hydrophilic and hydrophobic parts) towards multi aromatic resin (MAR) or multifunctional resin (MFR) is identified as the cause of the flow mark or wax stain which eventually contribute the noise of visual inspection. Also from material aspect, types of flame retardant either metal hydroxide or organic phosphorous cause low curability which affects the molded package surface evenness eventually affect visual inspection results. From mold tool aspect, the range of lower roughness average (Ra) of the Electrical Discharge Surface (EDM) mold cavity surface is preferred for better mark legibility. At the end, a proposal is given on parameters, material and tool set to get the best encapsulated IC package surfaces with clear and legible marking. The constraints and corresponding potential risks are also discussed in this paper in order to achieve the best results yet not induce other negative impact.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光参数、环氧模复合材料性能和模具表面光洁度对封装IC封装标记易读性的影响
制造技术质量要求的变化必须伴随着材料和工艺参数的适应。随着视觉检测技术的快速发展,100%自动化光学检测作为质量防火墙一直是人们追求的首选。在从人工光学检测到自动光学检测以增强缺陷可检测性的过渡中,由于人和机器在观察和解释标准方面的能力不同,适应工作很高。这将严重影响验收水平的合理性,从而导致过拒或过拒。对于封装集成电路来说,其挑战不仅在于检测缺陷的能力,还在于识别打印在模具化合物表面的激光打标字符,并将其用作可追溯性和识别目的。描述一个理论概念是为了掌握发生的机制。从激光打标角度出发,确定了打标深度范围和正确的打标尺寸等因素是影响激光打标易读性的主要因素。从材料的角度来看,蜡的类型(亲疏水部分的比例)对多芳树脂(MAR)或多功能树脂(MFR)的相容性被确定为流痕或蜡渍的原因,最终导致目视检查的噪音。同样从材料的角度来看,阻燃剂的类型,无论是氢氧化物金属或有机磷导致固化性低,影响成型包装表面的均匀性,最终影响视觉检测结果。从模具工具的角度来看,电火花表面(EDM)模腔表面粗糙度平均值(Ra)较低的范围是更好的标记易读性的首选。最后,从参数、材料和工具组合等方面提出了建议,以获得标记清晰易读的最佳封装IC封装表面。本文还讨论了约束条件和相应的潜在风险,以达到最佳效果,同时不产生其他负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Package Integrity and Reliability Effects of Mold Compound Chemistry for Power Device Application Kirkendall Voids Improvement in Thin Small No Lead Package Implementation of High-Temperature Pressure Sensor Package and Characterization up to 500°C EPIC Via Last on SOI Wafer Integration Challenges Laser hybrid integration on silicon photonic integrated circuits with reflected grating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1