Pyae Phyo Tun, P. Kumar, Ryan Arya Pratama, Liu Shuyong
{"title":"Brushless Synchronous Generator Turn-to-Turn Short Circuit Fault Detection Using Multilayer Neural Network","authors":"Pyae Phyo Tun, P. Kumar, Ryan Arya Pratama, Liu Shuyong","doi":"10.1109/ACEPT.2018.8610686","DOIUrl":null,"url":null,"abstract":"Stator winding short circuit is one of the faults that occur frequently in electrical machines. Therefore, fault detection and elimination in electric drive systems is necessary for safety-critical applications in order not to cause catastrophic failure to the machine in a short time. This paper reviews recent fault detection and diagnosis techniques that use signal analysis, model-based techniques and artificial intelligence machine diagnosis methods. Then, feedforward neural network will be trained, tested and validated whether or not this artificial neural network can classified healthy and different severity inter-turn short circuit levels by using per unit RMS 3 phases current and voltage quantities as well as fundamental and third harmonic components of current and voltage.","PeriodicalId":296432,"journal":{"name":"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACEPT.2018.8610686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Stator winding short circuit is one of the faults that occur frequently in electrical machines. Therefore, fault detection and elimination in electric drive systems is necessary for safety-critical applications in order not to cause catastrophic failure to the machine in a short time. This paper reviews recent fault detection and diagnosis techniques that use signal analysis, model-based techniques and artificial intelligence machine diagnosis methods. Then, feedforward neural network will be trained, tested and validated whether or not this artificial neural network can classified healthy and different severity inter-turn short circuit levels by using per unit RMS 3 phases current and voltage quantities as well as fundamental and third harmonic components of current and voltage.