Rotation and scale invariant feature extractors

M. Sutaone, P. Bartakke, V. Vyas, N. B. Pasalkar
{"title":"Rotation and scale invariant feature extractors","authors":"M. Sutaone, P. Bartakke, V. Vyas, N. B. Pasalkar","doi":"10.1109/TENCON.2003.1273321","DOIUrl":null,"url":null,"abstract":"This paper deals with texture feature extraction operators, which comprise linear filtering eventually followed by post processing. Robust, rotation and scale invariant texture operators are important for digital image libraries and multimedia databases. A method of rotation and scale-invariant texture classification based on a log polar coordinate system is introduced. Texture is an important clue in region based segmentation of images. Here, we provide analysis and implementation of a set of distortion invariant texture operators viz circular Mellin features (CMF). The CMF represent the spectral decomposition of the image scene in the polar log coordinate system and are invariant to both scale and orientation of the target texture pattern. The image and CMF are correlated followed by magnitude detection based on thresholding. The CMF extractors have a functional form that is similar to Gabor functions; they have distortion invariant characteristics, unlike Gabor functions, which makes them more suitable for texture segmentation.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"54 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper deals with texture feature extraction operators, which comprise linear filtering eventually followed by post processing. Robust, rotation and scale invariant texture operators are important for digital image libraries and multimedia databases. A method of rotation and scale-invariant texture classification based on a log polar coordinate system is introduced. Texture is an important clue in region based segmentation of images. Here, we provide analysis and implementation of a set of distortion invariant texture operators viz circular Mellin features (CMF). The CMF represent the spectral decomposition of the image scene in the polar log coordinate system and are invariant to both scale and orientation of the target texture pattern. The image and CMF are correlated followed by magnitude detection based on thresholding. The CMF extractors have a functional form that is similar to Gabor functions; they have distortion invariant characteristics, unlike Gabor functions, which makes them more suitable for texture segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转和尺度不变特征提取器
本文研究了纹理特征提取算子,该算子包括线性滤波和后期处理。鲁棒性、旋转性和尺度不变性纹理算子对数字图像库和多媒体数据库具有重要意义。介绍了一种基于对数极坐标系的旋转和尺度不变纹理分类方法。纹理是图像区域分割的重要线索。在此,我们分析并实现了一组畸变不变纹理算子,即圆形Mellin特征(CMF)。CMF表示图像场景在极对数坐标系下的光谱分解,并且对目标纹理模式的尺度和方向不变。将图像与CMF进行关联,然后进行基于阈值的幅度检测。CMF提取器具有类似于Gabor函数的功能形式;与Gabor函数不同,它们具有畸变不变性,这使得它们更适合于纹理分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Script to speech conversion for Marathi language Parameter optimization and rule base selection for fuzzy impulse filters using evolutionary algorithms VHDL based design of an FDWT processor High frequency industrial power supplies using inductor alternators driven by bio-mass gasifier based systems Adaptive estimation of parameters using partial information of desired outputs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1