DPM: Fast and scalable clustering algorithm for large scale high dimensional datasets

Tamer F. Ghanem, W. Elkilani, Hatem S. Ahmed, M. Hadhoud
{"title":"DPM: Fast and scalable clustering algorithm for large scale high dimensional datasets","authors":"Tamer F. Ghanem, W. Elkilani, Hatem S. Ahmed, M. Hadhoud","doi":"10.1109/ICCES.2014.7030932","DOIUrl":null,"url":null,"abstract":"Clustering multi-dense large scale high dimensional datasets is a challenging task duo to high time complexity of most clustering algorithms. Nowadays, data collection tools produce a large amount of data. So, fast algorithms are vital requirement for clustering such data. In this paper, a fast clustering algorithm, called Dimension-based Partitioning and Merging (DPM), is proposed. In DPM, First, data is partitioned into small dense volumes during the successive processing of dataset dimensions. Then, noise is filtered out using dimensional densities of the generated partitions. Finally, merging process is invoked to construct clusters based on partition boundary data samples. DPM algorithm automatically detects the number of data clusters based on three insensitive tuning parameters which decrease the burden of its usage. Performance evaluation of the proposed algorithm using different datasets shows its fastness and accuracy compared to other clustering competitors.","PeriodicalId":339697,"journal":{"name":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2014.7030932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Clustering multi-dense large scale high dimensional datasets is a challenging task duo to high time complexity of most clustering algorithms. Nowadays, data collection tools produce a large amount of data. So, fast algorithms are vital requirement for clustering such data. In this paper, a fast clustering algorithm, called Dimension-based Partitioning and Merging (DPM), is proposed. In DPM, First, data is partitioned into small dense volumes during the successive processing of dataset dimensions. Then, noise is filtered out using dimensional densities of the generated partitions. Finally, merging process is invoked to construct clusters based on partition boundary data samples. DPM algorithm automatically detects the number of data clusters based on three insensitive tuning parameters which decrease the burden of its usage. Performance evaluation of the proposed algorithm using different datasets shows its fastness and accuracy compared to other clustering competitors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DPM:用于大规模高维数据集的快速可扩展聚类算法
由于大多数聚类算法的高时间复杂度,多密度大规模高维数据集聚类是一项具有挑战性的任务。如今,数据收集工具产生了大量的数据。因此,快速算法是对此类数据聚类的重要要求。本文提出了一种快速聚类算法——基于维数的划分与合并(DPM)。在DPM中,首先,在数据集维度的逐次处理过程中,将数据分割成小而密集的体积。然后,使用生成的分区的维度密度过滤掉噪声。最后,调用合并过程,根据分区边界数据样本构造聚类。DPM算法基于三个不敏感的调优参数自动检测数据簇的数量,降低了算法的使用负担。使用不同的数据集对该算法进行性能评估,结果表明该算法与其他聚类竞争对手相比具有快速和准确的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulations and performance evaluation of Real-Time Multi-core Systems An Enhanced Queries Scheduler for query processing over a cloud environment EMD thresholding and denoising inspired by wavelet technique A proposed SNOMED CT ontology-based encoding methodology for diabetes diagnosis case-base A proposed framework for robust face identification system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1