Hierarchical adaptive local affine registration for respiratory motion estimation from 3-D MRI

C. Buerger, T. Schaeffter, A. King
{"title":"Hierarchical adaptive local affine registration for respiratory motion estimation from 3-D MRI","authors":"C. Buerger, T. Schaeffter, A. King","doi":"10.1109/ISBI.2010.5490219","DOIUrl":null,"url":null,"abstract":"Non-rigid image registration techniques are commonly used to estimate respiratory motion. Due to the computational complexity of freeform techniques based on control points, hierarchical techniques have been proposed which successively sub-divide the non-rigid registration problem into multiple locally rigid or affine components. A potential drawback of these techniques is that the image content is not considered during the subdivision process. In this paper, we propose a novel adaptive subdivision technique that attempts to automatically divide the image into areas of similar motion, resulting in more accurate local registrations. We demonstrate our new technique by using it to estimate thoracic respiratory motion fields from dynamic MRI data and compare our approach with non-adaptive local rigid and local affine approaches.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Non-rigid image registration techniques are commonly used to estimate respiratory motion. Due to the computational complexity of freeform techniques based on control points, hierarchical techniques have been proposed which successively sub-divide the non-rigid registration problem into multiple locally rigid or affine components. A potential drawback of these techniques is that the image content is not considered during the subdivision process. In this paper, we propose a novel adaptive subdivision technique that attempts to automatically divide the image into areas of similar motion, resulting in more accurate local registrations. We demonstrate our new technique by using it to estimate thoracic respiratory motion fields from dynamic MRI data and compare our approach with non-adaptive local rigid and local affine approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维MRI呼吸运动估计的层次自适应局部仿射配准
非刚性图像配准技术通常用于估计呼吸运动。由于基于控制点的自由曲面技术的计算复杂性,提出了分层技术,将非刚性配准问题依次细分为多个局部刚性或仿射分量。这些技术的一个潜在缺点是在细分过程中不考虑图像内容。在本文中,我们提出了一种新的自适应细分技术,该技术试图将图像自动划分为相似运动的区域,从而获得更准确的局部配准。我们通过使用它从动态MRI数据中估计胸腔呼吸运动场来展示我们的新技术,并将我们的方法与非自适应局部刚性和局部仿射方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1