Soil Moisture Estimation at 500m using Sentinel-1: application to African sites

Myriam Foucras, M. Zribi, A. Kallel
{"title":"Soil Moisture Estimation at 500m using Sentinel-1: application to African sites","authors":"Myriam Foucras, M. Zribi, A. Kallel","doi":"10.1109/ATSIP49331.2020.9231733","DOIUrl":null,"url":null,"abstract":"This paper proposes a change detection approach for the estimation of soil water content, at a spatial resolution of 0.5 km and a temporal resolution of 6 days. The algorithm proposes a soil moisture index between 0 and 1. 0 corresponds to the driest context, 1 corresponds to the wettest context. The approach is being tested on different study sites with sentinel-1 radar data. Unlike the classic change detection approach, the algorithm takes into account the effects of land use, vegetation development and the seasonal context. Results show a good correlation between satellite estimations and true measurements for the African studied regions.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a change detection approach for the estimation of soil water content, at a spatial resolution of 0.5 km and a temporal resolution of 6 days. The algorithm proposes a soil moisture index between 0 and 1. 0 corresponds to the driest context, 1 corresponds to the wettest context. The approach is being tested on different study sites with sentinel-1 radar data. Unlike the classic change detection approach, the algorithm takes into account the effects of land use, vegetation development and the seasonal context. Results show a good correlation between satellite estimations and true measurements for the African studied regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Sentinel-1估算500米的土壤湿度:在非洲站点的应用
本文提出了一种空间分辨率为0.5 km、时间分辨率为6 d的土壤含水量变化检测方法。该算法提出了一个介于0 ~ 1之间的土壤湿度指数。0代表最干燥的环境,1代表最潮湿的环境。该方法正在不同的研究地点用sentinel-1雷达数据进行测试。与传统的变化检测方法不同,该算法考虑了土地利用、植被发展和季节背景的影响。结果表明,非洲研究区域的卫星估计值与真实测量值之间具有良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1