{"title":"A Switch Design for Real-Time Industrial Networks","authors":"Qixin Wang, S. Gopalakrishnan, Xue Liu, L. Sha","doi":"10.1109/RTAS.2008.8","DOIUrl":null,"url":null,"abstract":"The convergence of computers and the physical world is the theme for next generation networking research. This trend calls for real-time network infrastructure, which requires a high-speed real-time WAN to serve as its backbone. However, commercially available high-speed WAN switches (routers) are designed for best-effort Internet traffic. A real-time switch design for the aforementioned networks is missing. We propose a real-time switch design using a crossbar switching fabric. The proposed switch can be implemented by making minimal modification, or even simplification, to the widely implemented iSLIP crossbar switch scheduler. Our real-time switch serves periodic and aperiodic traffic with real-time virtual machine tasks, which simplifies analysis, provides isolation, and facilitates future hierarchical scheduling and flow aggregation. Taking advantage of the fact that most industrial real-time network flows rarely change, our switch is better adapted to providing high bandwidths and low latencies.","PeriodicalId":130593,"journal":{"name":"2008 IEEE Real-Time and Embedded Technology and Applications Symposium","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Real-Time and Embedded Technology and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2008.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
The convergence of computers and the physical world is the theme for next generation networking research. This trend calls for real-time network infrastructure, which requires a high-speed real-time WAN to serve as its backbone. However, commercially available high-speed WAN switches (routers) are designed for best-effort Internet traffic. A real-time switch design for the aforementioned networks is missing. We propose a real-time switch design using a crossbar switching fabric. The proposed switch can be implemented by making minimal modification, or even simplification, to the widely implemented iSLIP crossbar switch scheduler. Our real-time switch serves periodic and aperiodic traffic with real-time virtual machine tasks, which simplifies analysis, provides isolation, and facilitates future hierarchical scheduling and flow aggregation. Taking advantage of the fact that most industrial real-time network flows rarely change, our switch is better adapted to providing high bandwidths and low latencies.