Speeding up Convolutional Neural Network Training with Dynamic Precision Scaling and Flexible Multiplier-Accumulator

Taesik Na, S. Mukhopadhyay
{"title":"Speeding up Convolutional Neural Network Training with Dynamic Precision Scaling and Flexible Multiplier-Accumulator","authors":"Taesik Na, S. Mukhopadhyay","doi":"10.1145/2934583.2934625","DOIUrl":null,"url":null,"abstract":"Training convolutional neural network is a major bottleneck when developing a new neural network topology. This paper presents a dynamic precision scaling (DPS) algorithm and flexible multiplier-accumulator (MAC) to speed up convolutional neural network training. The DPS algorithm utilizes dynamic fixed point and finds good enough numerical precision for target network while training. The precision information from DPS is used to configure our proposed MAC. The proposed MAC can perform fixed point computation with variable precision mode providing differentiated computation time which enables speeding up training for lower precision computation. Simulation results show that our work can achieve 5.7x speed-up while consuming 31% energy compared to baseline for modified Alexnet on Flickr image style recognition task.","PeriodicalId":142716,"journal":{"name":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","volume":"132 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2934583.2934625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Training convolutional neural network is a major bottleneck when developing a new neural network topology. This paper presents a dynamic precision scaling (DPS) algorithm and flexible multiplier-accumulator (MAC) to speed up convolutional neural network training. The DPS algorithm utilizes dynamic fixed point and finds good enough numerical precision for target network while training. The precision information from DPS is used to configure our proposed MAC. The proposed MAC can perform fixed point computation with variable precision mode providing differentiated computation time which enables speeding up training for lower precision computation. Simulation results show that our work can achieve 5.7x speed-up while consuming 31% energy compared to baseline for modified Alexnet on Flickr image style recognition task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用动态精确缩放和灵活乘加器加速卷积神经网络训练
卷积神经网络的训练是开发新型神经网络拓扑结构的主要瓶颈。为了提高卷积神经网络的训练速度,提出了一种动态精确缩放(DPS)算法和灵活的乘加器(MAC)算法。DPS算法利用动态不动点,在训练过程中为目标网络找到足够好的数值精度。利用DPS的精度信息来配置我们提出的MAC。提出的MAC可以进行可变精度模式的定点计算,提供差异化的计算时间,从而加快低精度计算的训练速度。仿真结果表明,改进后的Alexnet在Flickr图像风格识别任务上的速度提高了5.7倍,能耗为基准的31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Impact of Magnetic and Thermal Attack on STTRAM and Low-Overhead Mitigation Techniques OS-based Resource Accounting for Asynchronous Resource Use in Mobile Systems Data-Driven Low-Cost On-Chip Memory with Adaptive Power-Quality Trade-off for Mobile Video Streaming Measurement-Driven Methodology for Evaluating Processor Heterogeneity Options for Power-Performance Efficiency SATS: An Ultra-Low Power Time Synchronization for Solar Energy Harvesting WSNs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1