Automated Neural Network Accelerator Generation Framework for Multiple Neural Network Applications

Inho Lee, Seongmin Hong, G. Ryu, Yongjun Park
{"title":"Automated Neural Network Accelerator Generation Framework for Multiple Neural Network Applications","authors":"Inho Lee, Seongmin Hong, G. Ryu, Yongjun Park","doi":"10.1109/TENCON.2018.8650190","DOIUrl":null,"url":null,"abstract":"Neural networks are widely used in various applications, but general neural network accelerators support only one application at a time. Therefore, information for each application, such as synaptic weights and bias data, must be loaded quickly to use multiple neural network applications. Field-programmable gate array (FPGA)-based implementation has huge performance overhead owing to low data transmission bandwidth. In order to solve this problem, this paper presents an automated FPGA-based multi-neural network accelerator generation framework that can quickly support several applications by storing neural network application data in an on-chip memory inside the FPGA. To do this, we first design a shared custom hardware accelerator that can support rapid changes in multiple target neural network applications. Then, we introduce an automated multi-neural network accelerator generation framework that performs training, weight quantization, and neural accelerator synthesis.","PeriodicalId":132900,"journal":{"name":"TENCON 2018 - 2018 IEEE Region 10 Conference","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2018 - 2018 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2018.8650190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Neural networks are widely used in various applications, but general neural network accelerators support only one application at a time. Therefore, information for each application, such as synaptic weights and bias data, must be loaded quickly to use multiple neural network applications. Field-programmable gate array (FPGA)-based implementation has huge performance overhead owing to low data transmission bandwidth. In order to solve this problem, this paper presents an automated FPGA-based multi-neural network accelerator generation framework that can quickly support several applications by storing neural network application data in an on-chip memory inside the FPGA. To do this, we first design a shared custom hardware accelerator that can support rapid changes in multiple target neural network applications. Then, we introduce an automated multi-neural network accelerator generation framework that performs training, weight quantization, and neural accelerator synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多神经网络应用的自动神经网络加速器生成框架
神经网络广泛应用于各种应用中,但一般的神经网络加速器一次只能支持一个应用。因此,每个应用程序的信息,如突触权重和偏置数据,必须快速加载以使用多个神经网络应用程序。基于现场可编程门阵列(FPGA)的实现由于数据传输带宽低而造成巨大的性能开销。为了解决这一问题,本文提出了一种基于FPGA的自动化多神经网络加速器生成框架,该框架通过将神经网络应用数据存储在FPGA内部的片上存储器中,可以快速支持多种应用。为此,我们首先设计了一个共享的自定义硬件加速器,它可以支持多个目标神经网络应用程序的快速更改。然后,我们介绍了一个自动化的多神经网络加速器生成框架,该框架执行训练、权重量化和神经加速器合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency Profile Improvement of a Microgrid through Aggregated Demand Response A Study on Coarse Stage Bit Allocation to Improve Power Efficiency of a 10-bit Coarse-Fine SAR ADC Implemented in 65nm CMOS Process for Environmental Sensing Applications Analysis on the Limitation of Number of Channels in WDM System Based on Photonic Microring Resonator BMK Stick: IMU-Based Motion Recognition Air Mouse and Five-Multikey Keyboard Demand Response for Enhancing Survivability of Microgrids During Islanded Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1