K. Takano, S. Amakawa, K. Katayama, S. Hara, R. Dong, A. Kasamatsu, I. Hosako, K. Mizuno, Kazuaki Takahashi, T. Yoshida, M. Fujishima
{"title":"17.9 A 105Gb/s 300GHz CMOS transmitter","authors":"K. Takano, S. Amakawa, K. Katayama, S. Hara, R. Dong, A. Kasamatsu, I. Hosako, K. Mizuno, Kazuaki Takahashi, T. Yoshida, M. Fujishima","doi":"10.1109/ISSCC.2017.7870384","DOIUrl":null,"url":null,"abstract":"“High speed” in communications often means “high data-rate” and fiber-optic technologies have long been ahead of wireless technologies in that regard. However, an often overlooked definite advantage of wireless links over fiber-optic links is that waves travel at the speed of light c, which is about 50% faster than in optical fibers as shown in Fig. 17.9.1 (top left). This “minimum latency” is crucial for applications requiring real-time responses over a long distance, including high-frequency trading [1]. Further opportunities and new applications might be created if the absolute minimum latency and fiber-optic data-rates are put together. (Sub-)THz frequencies have an extremely broad atmospheric transmission window with manageable losses as shown in Fig. 17.9.1 (top right) and will be ideal for building light-speed links supporting fiber-optic data-rates. This paper presents a 105Gb/s 300GHz transmitter (TX) fabricated using a 40nm CMOS process.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74
Abstract
“High speed” in communications often means “high data-rate” and fiber-optic technologies have long been ahead of wireless technologies in that regard. However, an often overlooked definite advantage of wireless links over fiber-optic links is that waves travel at the speed of light c, which is about 50% faster than in optical fibers as shown in Fig. 17.9.1 (top left). This “minimum latency” is crucial for applications requiring real-time responses over a long distance, including high-frequency trading [1]. Further opportunities and new applications might be created if the absolute minimum latency and fiber-optic data-rates are put together. (Sub-)THz frequencies have an extremely broad atmospheric transmission window with manageable losses as shown in Fig. 17.9.1 (top right) and will be ideal for building light-speed links supporting fiber-optic data-rates. This paper presents a 105Gb/s 300GHz transmitter (TX) fabricated using a 40nm CMOS process.