Towards Run-time Efficient Hierarchical Reinforcement Learning

Sasha Abramowitz, G. Nitschke
{"title":"Towards Run-time Efficient Hierarchical Reinforcement Learning","authors":"Sasha Abramowitz, G. Nitschke","doi":"10.1109/CEC55065.2022.9870368","DOIUrl":null,"url":null,"abstract":"This paper investigates a novel method combining Scalable Evolution Strategies (S-ES) and Hierarchical Reinforcement Learning (HRL). S-ES, named for its excellent scalability, was popularised with demonstrated performance comparable to state-of-the-art policy gradient methods. However, S-ES has not been tested in conjunction with HRL methods, which empower temporal abstraction thus allowing agents to tackle more challenging problems. We introduce a novel method merging S-ES and HRL, which creates a highly scalable and efficient (compute time) algorithm. We demonstrate that the proposed method benefits from S-ES's scalability and indifference to delayed rewards. This results in our main contribution: significantly higher learning speed and competitive performance compared to gradient-based HRL methods, across a range of tasks.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates a novel method combining Scalable Evolution Strategies (S-ES) and Hierarchical Reinforcement Learning (HRL). S-ES, named for its excellent scalability, was popularised with demonstrated performance comparable to state-of-the-art policy gradient methods. However, S-ES has not been tested in conjunction with HRL methods, which empower temporal abstraction thus allowing agents to tackle more challenging problems. We introduce a novel method merging S-ES and HRL, which creates a highly scalable and efficient (compute time) algorithm. We demonstrate that the proposed method benefits from S-ES's scalability and indifference to delayed rewards. This results in our main contribution: significantly higher learning speed and competitive performance compared to gradient-based HRL methods, across a range of tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向运行时高效的分层强化学习
本文研究了一种结合可扩展进化策略(S-ES)和层次强化学习(HRL)的新方法。S-ES因其出色的可扩展性而得名,其性能可与最先进的策略梯度方法相媲美。然而,S-ES还没有与HRL方法一起进行测试,HRL方法赋予了时间抽象能力,从而允许代理处理更具挑战性的问题。我们提出了一种新的融合S-ES和HRL的方法,该方法创建了一个高度可扩展和高效(计算时间)的算法。我们证明了所提出的方法受益于S-ES的可扩展性和对延迟奖励的漠不关心。这导致了我们的主要贡献:在一系列任务中,与基于梯度的HRL方法相比,显著提高了学习速度和竞争表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1