Inverted Index Compression for Scalable Image Matching

David M. Chen, Sam S. Tsai, V. Chandrasekhar, Gabriel Takacs, Ramakrishna Vedantham, R. Grzeszczuk, B. Girod
{"title":"Inverted Index Compression for Scalable Image Matching","authors":"David M. Chen, Sam S. Tsai, V. Chandrasekhar, Gabriel Takacs, Ramakrishna Vedantham, R. Grzeszczuk, B. Girod","doi":"10.1109/DCC.2010.53","DOIUrl":null,"url":null,"abstract":"To perform fast image matching against large databases, a Vocabulary Tree (VT) uses an inverted index that maps from each tree node to database images which have visited that node. The inverted index can require gigabytes of memory, which significantly slows down the database server. In this paper, we design, develop, and compare techniques for inverted index compression for image-based retrieval. We show that these techniques significantly reduce memory usage, by as much as 5x, without loss in recognition accuracy. Our work includes fast decoding methods, an offline database reordering scheme that exploits the similarity between images for additional memory savings, and a generalized coding scheme for soft-binned feature descriptor histograms. We also show that reduced index memory permits memory-intensive image matching techniques that boost recognition accuracy.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

To perform fast image matching against large databases, a Vocabulary Tree (VT) uses an inverted index that maps from each tree node to database images which have visited that node. The inverted index can require gigabytes of memory, which significantly slows down the database server. In this paper, we design, develop, and compare techniques for inverted index compression for image-based retrieval. We show that these techniques significantly reduce memory usage, by as much as 5x, without loss in recognition accuracy. Our work includes fast decoding methods, an offline database reordering scheme that exploits the similarity between images for additional memory savings, and a generalized coding scheme for soft-binned feature descriptor histograms. We also show that reduced index memory permits memory-intensive image matching techniques that boost recognition accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可伸缩图像匹配的倒排索引压缩
为了针对大型数据库执行快速图像匹配,词汇树(VT)使用一个倒排索引,该索引将每个树节点映射到访问过该节点的数据库图像。倒排索引可能需要千兆字节的内存,这会显著降低数据库服务器的速度。在本文中,我们设计、开发和比较了基于图像检索的倒排索引压缩技术。我们表明,这些技术显著减少了内存使用,最多减少了5倍,而不会损失识别准确性。我们的工作包括快速解码方法,离线数据库重新排序方案,利用图像之间的相似性来节省额外的内存,以及软分类特征描述符直方图的通用编码方案。我们还表明,减少索引内存允许内存密集型图像匹配技术,提高识别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shape Recognition Using Vector Quantization Lossless Reduced Cutset Coding of Markov Random Fields Optimized Analog Mappings for Distributed Source-Channel Coding An MCMC Approach to Lossy Compression of Continuous Sources Lossless Compression of Mapped Domain Linear Prediction Residual for ITU-T Recommendation G.711.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1