Integrated GNSS/INU, vehicle dynamics, and microscopic traffic flow simulator for automotive safety

G. Dedes, D. Grejner-Brzezinska, D. Guenther, G. Heydinger, K. Mouskos, B. Park, C. Toth
{"title":"Integrated GNSS/INU, vehicle dynamics, and microscopic traffic flow simulator for automotive safety","authors":"G. Dedes, D. Grejner-Brzezinska, D. Guenther, G. Heydinger, K. Mouskos, B. Park, C. Toth","doi":"10.1109/ITSC.2011.6082995","DOIUrl":null,"url":null,"abstract":"This paper presents the development of a comprehensive integrated GNSS/INU simulator consisting of a microscopic traffic simulator based on VISSIM, a vehicle dynamics simulator based on CarSim, and a GNSS/INU simulator. The resulting GNSS/INU simulator provides an integrated design, test and evaluation platform for exploring new ideas, developing advanced concept designs and investigating the impact of existing and emerging Global Navigation Systems (GNSS) and Inertial Navigation Unit (INU) technologies on automotive safety at the vehicle and network levels. For the simulation of hazardous conditions VISSIM generates safety warning events based on surrogate safety indicators. The warning events are intercepted at the vehicle dynamics simulator CarSim which generates simulated `ground truth' trajectories based on VISSIM's generated control parameters. GNSS/INU errors are generated by a GNSS/INU simulator and added to the CarSim `ground truth' trajectories. The simulated GNSS/INU vehicle trajectories and the `ground truth' CarSim trajectories are processed through a “Driver-Vehicle Response” module for the estimation of individual vehicle crashes. These crashes are employed to train a Neural Network (NN) as a non-parametric network crash estimator. The trained NN and V2V/V2I simulators are employed to estimate the reduction of network crashes resulting from the use of GNSS/IMU sensors in the vehicles.","PeriodicalId":186596,"journal":{"name":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2011.6082995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents the development of a comprehensive integrated GNSS/INU simulator consisting of a microscopic traffic simulator based on VISSIM, a vehicle dynamics simulator based on CarSim, and a GNSS/INU simulator. The resulting GNSS/INU simulator provides an integrated design, test and evaluation platform for exploring new ideas, developing advanced concept designs and investigating the impact of existing and emerging Global Navigation Systems (GNSS) and Inertial Navigation Unit (INU) technologies on automotive safety at the vehicle and network levels. For the simulation of hazardous conditions VISSIM generates safety warning events based on surrogate safety indicators. The warning events are intercepted at the vehicle dynamics simulator CarSim which generates simulated `ground truth' trajectories based on VISSIM's generated control parameters. GNSS/INU errors are generated by a GNSS/INU simulator and added to the CarSim `ground truth' trajectories. The simulated GNSS/INU vehicle trajectories and the `ground truth' CarSim trajectories are processed through a “Driver-Vehicle Response” module for the estimation of individual vehicle crashes. These crashes are employed to train a Neural Network (NN) as a non-parametric network crash estimator. The trained NN and V2V/V2I simulators are employed to estimate the reduction of network crashes resulting from the use of GNSS/IMU sensors in the vehicles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成GNSS/INU,车辆动力学和微观交通流模拟器,用于汽车安全
本文介绍了基于VISSIM的微观交通模拟器、基于CarSim的车辆动力学模拟器和GNSS/INU模拟器的综合集成GNSS/INU模拟器的开发。由此产生的GNSS/INU模拟器提供了一个集成的设计、测试和评估平台,用于探索新想法,开发先进的概念设计,并研究现有和新兴的全球导航系统(GNSS)和惯性导航单元(INU)技术在车辆和网络层面对汽车安全的影响。为了模拟危险条件,VISSIM基于替代安全指标生成安全警告事件。警告事件在车辆动力学模拟器CarSim中被拦截,该模拟器根据VISSIM生成的控制参数生成模拟的“地面真实”轨迹。GNSS/INU误差由GNSS/INU模拟器生成,并添加到CarSim的“地面真实”轨迹中。模拟的GNSS/INU车辆轨迹和“地面真实”CarSim轨迹通过“驾驶员-车辆响应”模块进行处理,以估计个别车辆碰撞。这些崩溃被用来训练神经网络(NN)作为非参数网络崩溃估计器。使用训练好的神经网络和V2V/V2I模拟器来估计由于在车辆中使用GNSS/IMU传感器而导致的网络崩溃的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera Path2Go: Context-aware services for mobile real-time multimodal traveler information Mobile traffic surveillance system for dynamic roadway and vehicle traffic data integration A pattern recognition approach for anomaly detection on buses brake system Evaluating active traffic and demand management strategies for congested tourism traffic corridor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1