{"title":"Numerical and experimental study of a novel body-mounted piezoelectric energy harvester based on synchronized multi-magnet excitation","authors":"Arūnas Kleiva, R. Dauksevicius","doi":"10.1109/EUROSIME.2019.8724591","DOIUrl":null,"url":null,"abstract":"This paper presents results of finite element analysis and testing of a novel frequency up-converting multi-magnet piezoelectric vibration energy harvester, which advantageously exploits multiple magnetic excitation events per single cycle of out-of-plane plucking together with amplification of driving magnet speed in order to provide sufficiently stable generation of nearly constant high average power when subjected to real-life human body movements. It is based on a cantilevered bimorph that is magnetically deflected and released (plucked) by a couple of driving magnets that are accelerated by means of magnets placed on inertial rotor. It was demonstrated that the proposed device operating in a synchronized multi-magnet excitation regime outperforms its conventional single-magnet counterparts, thereby constituting a viable vibration energy harvesting concept that addresses key challenges associated with time-varying ultralow frequency biomechanical excitations.","PeriodicalId":357224,"journal":{"name":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2019.8724591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents results of finite element analysis and testing of a novel frequency up-converting multi-magnet piezoelectric vibration energy harvester, which advantageously exploits multiple magnetic excitation events per single cycle of out-of-plane plucking together with amplification of driving magnet speed in order to provide sufficiently stable generation of nearly constant high average power when subjected to real-life human body movements. It is based on a cantilevered bimorph that is magnetically deflected and released (plucked) by a couple of driving magnets that are accelerated by means of magnets placed on inertial rotor. It was demonstrated that the proposed device operating in a synchronized multi-magnet excitation regime outperforms its conventional single-magnet counterparts, thereby constituting a viable vibration energy harvesting concept that addresses key challenges associated with time-varying ultralow frequency biomechanical excitations.