Incremental Learning on Decorrelated Approximators

Jan H. Schoenke, W. Brockmann
{"title":"Incremental Learning on Decorrelated Approximators","authors":"Jan H. Schoenke, W. Brockmann","doi":"10.1109/ICMLA.2015.153","DOIUrl":null,"url":null,"abstract":"In general, designing an incremental learning system for a particular task at least consists of choosing an appropriate approximation structure and learning algorithm. Common Linear In the Parameters (LIP) approximation structures are for example polynomials, radial basis functions or grid-based lookup tables. Typical learning algorithms accompanying them are for example Passive-Aggressive (PA) or Recursive Least Squares (RLS). Usually, these two choices are not independent as not every learning algorithm is able to handle any approximation structure well. Here we present a formalism that allows the designer to treat these two design aspects independently from each other. By decorrelating the basis functions of the approximator we form a new set of basis functions that can be handled by any learning algorithm. We develop design guidelines in order to make our approach an easy to use tool and to support the designer in making the learning progress reliable at design time. Further, we look at the properties of our approach as an extension to LIP approximators and investigate its implications for the behavior of the incremental learning system using artificial, benchmark and real world data sets for regression tasks.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In general, designing an incremental learning system for a particular task at least consists of choosing an appropriate approximation structure and learning algorithm. Common Linear In the Parameters (LIP) approximation structures are for example polynomials, radial basis functions or grid-based lookup tables. Typical learning algorithms accompanying them are for example Passive-Aggressive (PA) or Recursive Least Squares (RLS). Usually, these two choices are not independent as not every learning algorithm is able to handle any approximation structure well. Here we present a formalism that allows the designer to treat these two design aspects independently from each other. By decorrelating the basis functions of the approximator we form a new set of basis functions that can be handled by any learning algorithm. We develop design guidelines in order to make our approach an easy to use tool and to support the designer in making the learning progress reliable at design time. Further, we look at the properties of our approach as an extension to LIP approximators and investigate its implications for the behavior of the incremental learning system using artificial, benchmark and real world data sets for regression tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
去相关逼近器的增量学习
一般来说,设计一个特定任务的增量学习系统至少包括选择合适的近似结构和学习算法。常见的线性参数近似结构是多项式、径向基函数或基于网格的查找表。典型的学习算法包括被动攻击(PA)或递归最小二乘(RLS)。通常,这两种选择不是独立的,因为不是每个学习算法都能很好地处理任何近似结构。在这里,我们提出了一种形式主义,允许设计师独立对待这两个设计方面。通过解相关逼近器的基函数,我们形成了一组新的基函数,可以被任何学习算法处理。我们制定设计指南是为了使我们的方法成为一个易于使用的工具,并支持设计师在设计时使学习过程可靠。此外,我们将我们的方法作为LIP近似器的扩展,并研究其对使用人工、基准和真实世界数据集进行回归任务的增量学习系统行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of SPEI Using MLR and ANN: A Case Study for Wilsons Promontory Station in Victoria Statistical Downscaling of Climate Change Scenarios of Rainfall and Temperature over Indira Sagar Canal Command Area in Madhya Pradesh, India Lambda Consensus Clustering Time Series Prediction Based on Online Learning NewsCubeSum: A Personalized Multidimensional News Update Summarization System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1