Electromyogram decomposition via unsupervised dynamic multi-layer neural network

M. Hassoun, C. Wang, A. Spitzer
{"title":"Electromyogram decomposition via unsupervised dynamic multi-layer neural network","authors":"M. Hassoun, C. Wang, A. Spitzer","doi":"10.1109/IJCNN.1992.226954","DOIUrl":null,"url":null,"abstract":"A signal decomposition method which utilizes a multi-layer dynamic network to automatically decompose a clinical electromyogram (EMG), without supervision, is proposed. Due to the lack of a priori knowledge of motor unit potential (MUP) morphology, the EMG decomposition must be performed in an unsupervised manner. A neural network classifier, consisting of a multi-layer neural net of perceptrons and using an unsupervised training strategy, is proposed. The neural network learns repetitive appearances of MUP waveforms from their suspected occurrence in a given filtered EMLG signal by using an unsupervised clustering strategy. Upon training, the network creates stable attractors which correspond to nominal representations of MUP clusters hidden in the data. The decomposition/clustering capabilities of the proposed method are validated on a real EMG signal and on an unlabeled signal set.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.226954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A signal decomposition method which utilizes a multi-layer dynamic network to automatically decompose a clinical electromyogram (EMG), without supervision, is proposed. Due to the lack of a priori knowledge of motor unit potential (MUP) morphology, the EMG decomposition must be performed in an unsupervised manner. A neural network classifier, consisting of a multi-layer neural net of perceptrons and using an unsupervised training strategy, is proposed. The neural network learns repetitive appearances of MUP waveforms from their suspected occurrence in a given filtered EMLG signal by using an unsupervised clustering strategy. Upon training, the network creates stable attractors which correspond to nominal representations of MUP clusters hidden in the data. The decomposition/clustering capabilities of the proposed method are validated on a real EMG signal and on an unlabeled signal set.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无监督动态多层神经网络的肌电图分解
提出了一种利用多层动态网络对临床肌电图进行无监督自动分解的方法。由于缺乏运动单元电位(MUP)形态学的先验知识,肌电图分解必须以无监督的方式进行。提出了一种由多层感知器神经网络组成并采用无监督训练策略的神经网络分类器。神经网络通过使用无监督聚类策略,从给定滤波EMLG信号中可疑出现的MUP波形中学习重复出现的MUP波形。经过训练,网络创建稳定的吸引子,这些吸引子对应于隐藏在数据中的MUP簇的名义表示。在真实肌电信号和未标记信号集上验证了所提出方法的分解/聚类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1