Lost and Found!: associating target persons in camera surveillance footage with smartphone identifiers

Hansi Liu, Abrar Alali, Mohamed Ibrahim, Hongyu Li, M. Gruteser, Shubham Jain, Kristin J. Dana, A. Ashok, Bin Cheng, Hongsheng Lu
{"title":"Lost and Found!: associating target persons in camera surveillance footage with smartphone identifiers","authors":"Hansi Liu, Abrar Alali, Mohamed Ibrahim, Hongyu Li, M. Gruteser, Shubham Jain, Kristin J. Dana, A. Ashok, Bin Cheng, Hongsheng Lu","doi":"10.1145/3458864.3466904","DOIUrl":null,"url":null,"abstract":"We demonstrate an application of finding target persons on a surveillance video. Each visually detected participant is tagged with a smartphone ID and the target person with the query ID is highlighted. This work is motivated by the fact that establishing associations between subjects observed in camera images and messages transmitted from their wireless devices can enable fast and reliable tagging. This is particularly helpful when target pedestrians need to be found on public surveillance footage, without the reliance on facial recognition. The underlying system uses a multi-modal approach that leverages WiFi Fine Timing Measurements (FTM) and inertial sensor (IMU) data to associate each visually detected individual with a corresponding smartphone identifier. These smartphone measurements are combined strategically with RGB-D information from the camera, to learn affinity matrices using a multi-modal deep learning network.","PeriodicalId":153361,"journal":{"name":"Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458864.3466904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We demonstrate an application of finding target persons on a surveillance video. Each visually detected participant is tagged with a smartphone ID and the target person with the query ID is highlighted. This work is motivated by the fact that establishing associations between subjects observed in camera images and messages transmitted from their wireless devices can enable fast and reliable tagging. This is particularly helpful when target pedestrians need to be found on public surveillance footage, without the reliance on facial recognition. The underlying system uses a multi-modal approach that leverages WiFi Fine Timing Measurements (FTM) and inertial sensor (IMU) data to associate each visually detected individual with a corresponding smartphone identifier. These smartphone measurements are combined strategically with RGB-D information from the camera, to learn affinity matrices using a multi-modal deep learning network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
失物招领处!:将摄像头监控录像中的目标人物与智能手机识别码相关联
我们演示了在监控视频中寻找目标人员的应用。每个视觉检测到的参与者都标有智能手机ID,并突出显示具有查询ID的目标人。这项工作的动机是在相机图像中观察到的对象和从他们的无线设备传输的信息之间建立联系,可以实现快速可靠的标记。当需要在公共监控录像中找到目标行人,而不依赖面部识别时,这一点尤其有用。底层系统采用多模态方法,利用WiFi精细定时测量(FTM)和惯性传感器(IMU)数据,将每个视觉检测到的个体与相应的智能手机标识符关联起来。这些智能手机测量数据策略性地与来自相机的RGB-D信息相结合,使用多模态深度学习网络学习亲和矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Open source RAN slicing on POWDER: a top-to-bottom O-RAN use case Measuring forest carbon with mobile phones ThingSpire OS: a WebAssembly-based IoT operating system for cloud-edge integration SOS: isolated health monitoring system to save our satellites Acoustic ruler using wireless earbud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1