Fast low-level multi-scale feature extraction for hexagonal images

S. Coleman, B. Scotney, B. Gardiner
{"title":"Fast low-level multi-scale feature extraction for hexagonal images","authors":"S. Coleman, B. Scotney, B. Gardiner","doi":"10.23919/MVA.2017.7986871","DOIUrl":null,"url":null,"abstract":"Inspired by the human vision system and its capability to process in real-time, an efficient framework for low-level feature extraction on hexagonal pixel-based images is presented. This is achieved by utilizing the spiral architecture addressing scheme to simulate eye-tremor along with the convolution of non-overlapping gradient masks. Using sparse spiral convolution and the development of cluster operators, we obtain a set of output image responses “a-trous” that is subsequently collated into a consolidated output response; it is also demonstrated that this framework can be extended to feature extraction at different scales. We show that the proposed framework is considerably faster than using conventional spiral convolution or the use of look-up tables for direct access to hexagonal pixel neighbourhood addresses.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"434 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the human vision system and its capability to process in real-time, an efficient framework for low-level feature extraction on hexagonal pixel-based images is presented. This is achieved by utilizing the spiral architecture addressing scheme to simulate eye-tremor along with the convolution of non-overlapping gradient masks. Using sparse spiral convolution and the development of cluster operators, we obtain a set of output image responses “a-trous” that is subsequently collated into a consolidated output response; it is also demonstrated that this framework can be extended to feature extraction at different scales. We show that the proposed framework is considerably faster than using conventional spiral convolution or the use of look-up tables for direct access to hexagonal pixel neighbourhood addresses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速低阶六边形图像多尺度特征提取
受人类视觉系统及其实时处理能力的启发,提出了一种高效的六边形像素图像底层特征提取框架。这是通过利用螺旋结构寻址方案来模拟眼球震颤以及非重叠梯度掩模的卷积来实现的。利用稀疏螺旋卷积和聚类算子的发展,我们获得了一组输出图像响应“a-trous”,这些响应随后被整理成一个统一的输出响应;结果表明,该框架可以扩展到不同尺度的特征提取。我们表明,所提出的框架比使用传统的螺旋卷积或使用查找表直接访问六边形像素邻域地址要快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixture particle filter with block jump biomechanics constraint for volleyball players lower body parts tracking Event based surveillance video synopsis using trajectory kinematics descriptors Banknote portrait detection using convolutional neural network Ball-like observation model and multi-peak distribution estimation based particle filter for 3D Ping-pong ball tracking FPGA implementation of high frame rate and ultra-low delay vision system with local and global parallel based matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1