Sequential Modeling of Hierarchical User Intention and Preference for Next-item Recommendation

N. Zhu, Jian Cao, Yanchi Liu, Yang Yang, Haochao Ying, Hui Xiong
{"title":"Sequential Modeling of Hierarchical User Intention and Preference for Next-item Recommendation","authors":"N. Zhu, Jian Cao, Yanchi Liu, Yang Yang, Haochao Ying, Hui Xiong","doi":"10.1145/3336191.3371840","DOIUrl":null,"url":null,"abstract":"The next-item recommendation has attracted great research interests with both static and dynamic users' preferences considered. Existing approaches typically utilize user-item binary relations, and assume a flat preference distribution over items for each user. However, this assumption neglects the hierarchical discrimination between user intentions and user preferences, causing the methods have limited capacity to depict intention-specific preference. In fact, a consumer's purchasing behavior involves a natural sequential process, i.e., he/she first has an intention to buy one type of items, followed by choosing a specific item according to his/her preference under this intention. To this end, we propose a novel key-array memory network (KA-MemNN), which takes both user intentions and preferences into account for next-item recommendation. Specifically, the user behavioral intention tendency is determined through key addressing. Further, each array outputs an intention-specific preference representation of a user. Then, the degree of user's behavioral intention tendency and intention-specific preference representation are combined to form a hierarchical representation of a user. This representation is further utilized to replace the static profile of users in traditional matrix factorization for the purposes of reasoning. The experimental results on real-world data demonstrate the advantages of our approach over state-of-the-art methods.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The next-item recommendation has attracted great research interests with both static and dynamic users' preferences considered. Existing approaches typically utilize user-item binary relations, and assume a flat preference distribution over items for each user. However, this assumption neglects the hierarchical discrimination between user intentions and user preferences, causing the methods have limited capacity to depict intention-specific preference. In fact, a consumer's purchasing behavior involves a natural sequential process, i.e., he/she first has an intention to buy one type of items, followed by choosing a specific item according to his/her preference under this intention. To this end, we propose a novel key-array memory network (KA-MemNN), which takes both user intentions and preferences into account for next-item recommendation. Specifically, the user behavioral intention tendency is determined through key addressing. Further, each array outputs an intention-specific preference representation of a user. Then, the degree of user's behavioral intention tendency and intention-specific preference representation are combined to form a hierarchical representation of a user. This representation is further utilized to replace the static profile of users in traditional matrix factorization for the purposes of reasoning. The experimental results on real-world data demonstrate the advantages of our approach over state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分级用户意向和下一项推荐偏好的顺序建模
下一项推荐引起了很大的研究兴趣,同时考虑了静态和动态用户的偏好。现有的方法通常利用用户-项目二元关系,并假设每个用户的项目具有平坦的偏好分布。然而,这种假设忽略了用户意图和用户偏好之间的层次区别,导致方法描述特定意图偏好的能力有限。事实上,消费者的购买行为是一个自然的顺序过程,即消费者首先有购买某一类商品的意向,然后在这种意向下根据自己的喜好选择某一类商品。为此,我们提出了一种新的键阵列记忆网络(KA-MemNN),它将用户的意图和偏好都考虑到下一个项目的推荐。具体来说,通过键寻址来确定用户的行为意向倾向。此外,每个数组输出用户的特定于意图的首选项表示。然后,将用户的行为意向倾向程度与意向偏好表征相结合,形成用户的层次表征。为了进行推理,进一步利用这种表示来取代传统矩阵分解中用户的静态轮廓。实际数据的实验结果表明,我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1