Charge plasma based partial-ground-plane-MOSFET on selective buried oxide (SELBOX)

F. Bashir, S. Loan, Asim M. Murshid, A. Alamoud
{"title":"Charge plasma based partial-ground-plane-MOSFET on selective buried oxide (SELBOX)","authors":"F. Bashir, S. Loan, Asim M. Murshid, A. Alamoud","doi":"10.1109/S3S.2016.7804385","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel charge plasma based partial ground plane selective buried oxide MOSFET (CP-PGP-SELBOX-MOSFET). In the proposed device source, drain regions and the partial ground planes (PGPs) have been realized by using metals of different work-functions and not by the conventional method of doping. A two dimensional (2D) simulation study has revealed that the magnitude of the short-channel effects (SCEs) have got significantly reduced in the proposed device in comparison to the conventional one. Further, it has been observed that ION/IOFF ratio and subthreshold slope (SS) in the proposed device has been improved significantly in comparison to conventional SELBOX MOSFET. Further, the proposed device is free from doping related issues and can be fabricated at low temperature, as it does not employ the conventional ion implantation for realizing various regions.","PeriodicalId":145660,"journal":{"name":"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2016.7804385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we propose a novel charge plasma based partial ground plane selective buried oxide MOSFET (CP-PGP-SELBOX-MOSFET). In the proposed device source, drain regions and the partial ground planes (PGPs) have been realized by using metals of different work-functions and not by the conventional method of doping. A two dimensional (2D) simulation study has revealed that the magnitude of the short-channel effects (SCEs) have got significantly reduced in the proposed device in comparison to the conventional one. Further, it has been observed that ION/IOFF ratio and subthreshold slope (SS) in the proposed device has been improved significantly in comparison to conventional SELBOX MOSFET. Further, the proposed device is free from doping related issues and can be fabricated at low temperature, as it does not employ the conventional ion implantation for realizing various regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择性埋藏氧化物(SELBOX)上基于电荷等离子体的部分地平面mosfet
在这项工作中,我们提出了一种新的基于电荷等离子体的部分地平面选择性埋地氧化MOSFET (CP-PGP-SELBOX-MOSFET)。在该器件中,源极区、漏极区和局部地平面(PGPs)是通过使用不同功函数的金属而不是传统的掺杂方法来实现的。二维仿真研究表明,与传统器件相比,该器件的短通道效应(SCEs)幅度显著降低。此外,与传统的SELBOX MOSFET相比,所提出器件的离子/IOFF比和亚阈值斜率(SS)得到了显着改善。此外,该装置不存在掺杂相关问题,并且可以在低温下制造,因为它不采用传统的离子注入来实现各种区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra low energy FDSOI asynchronous reconfiguration network for an IoT wireless sensor network node Challenges and opportunities of vertical FET devices using 3D circuit design layouts Correlations between plasma induced damage and negative bias temperature instability in 65 nm bulk and thin-BOX FDSOI processes Influence of source-drain engineering and temperature on split-capacitance characteristics of FDSOI p-i-n gated diodes Sub-pJ per operation scalable computing: The PULP experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1