OfficeHours: A System for Student Supervisor Matching through Reinforcement Learning

Yuan Gao, K. Ilves, D. Glowacka
{"title":"OfficeHours: A System for Student Supervisor Matching through Reinforcement Learning","authors":"Yuan Gao, K. Ilves, D. Glowacka","doi":"10.1145/2732158.2732189","DOIUrl":null,"url":null,"abstract":"We describe OfficeHours, a recommender system that assists students in finding potential supervisors for their dissertation projects. OfficeHours is an interactive recommender system that combines reinforcement learning techniques with a novel interface that assists the student in formulating their query and allows active engagement in directing their search. Students can directly manipulate document features (keywords) extracted from scientific articles written by faculty members to indicate their interests and reinforcement learning is used to model the student's interests by allowing the system to trade off between exploration and exploitation. The goal of system is to give the student the opportunity to more effectively search for possible project supervisors in a situation where the student may have difficulties formulating their query or when very little information may be available on faculty members' websites about their research interests.","PeriodicalId":177570,"journal":{"name":"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2732158.2732189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We describe OfficeHours, a recommender system that assists students in finding potential supervisors for their dissertation projects. OfficeHours is an interactive recommender system that combines reinforcement learning techniques with a novel interface that assists the student in formulating their query and allows active engagement in directing their search. Students can directly manipulate document features (keywords) extracted from scientific articles written by faculty members to indicate their interests and reinforcement learning is used to model the student's interests by allowing the system to trade off between exploration and exploitation. The goal of system is to give the student the opportunity to more effectively search for possible project supervisors in a situation where the student may have difficulties formulating their query or when very little information may be available on faculty members' websites about their research interests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OfficeHours:基于强化学习的学生导师匹配系统
我们描述了OfficeHours,一个推荐系统,帮助学生找到潜在的导师为他们的论文项目。OfficeHours是一个交互式推荐系统,它结合了强化学习技术和新颖的界面,帮助学生制定他们的查询,并允许积极参与指导他们的搜索。学生可以直接操作从教师撰写的科学文章中提取的文档特征(关键词)来表明他们的兴趣,强化学习用于通过允许系统在探索和利用之间进行权衡来模拟学生的兴趣。该系统的目标是,当学生在提出问题时遇到困难,或者在教师网站上关于他们的研究兴趣的信息很少时,学生有机会更有效地搜索可能的项目主管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a Crowd-based Picture Schematization System Interactive Control and Visualization of Difficulty Inferences from User-Interface Commands A Revisit to The Identification of Contexts in Recommender Systems Multimodal Interactive Machine Learning for User Understanding Mechanix: A Sketch-Based Educational Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1