Morphological-based microcalcification detection using adaptive thresholding and structural similarity indices

Asmae Touil, Karim Kalti, Pierre-Henri Conze, B. Solaiman, M. Mahjoub
{"title":"Morphological-based microcalcification detection using adaptive thresholding and structural similarity indices","authors":"Asmae Touil, Karim Kalti, Pierre-Henri Conze, B. Solaiman, M. Mahjoub","doi":"10.1109/ATSIP49331.2020.9231731","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new morphological-based method for automatic detection of microcalcifications in digitized mammograms. It uses various structuring elements to deal with the diversity of microcalcification characteristics. The obtained morphological maps are converted to a continuous suspicion map (SM) based on the structural similarity index (SSIM). This new semantic representation map is then locally analyzed, using superpixels, to automatically estimate adaptive threshold values and finally identify potential microcalcification areas. The proposed method was evaluated using the publicly-available INBreast database. Experimental results show the benefits gained in terms of improving microcalcification detection performances compared to some state-of-the-art methods.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a new morphological-based method for automatic detection of microcalcifications in digitized mammograms. It uses various structuring elements to deal with the diversity of microcalcification characteristics. The obtained morphological maps are converted to a continuous suspicion map (SM) based on the structural similarity index (SSIM). This new semantic representation map is then locally analyzed, using superpixels, to automatically estimate adaptive threshold values and finally identify potential microcalcification areas. The proposed method was evaluated using the publicly-available INBreast database. Experimental results show the benefits gained in terms of improving microcalcification detection performances compared to some state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应阈值和结构相似性指标的形态学微钙化检测
在本文中,我们提出了一种新的基于形态学的方法来自动检测数字化乳房x线照片中的微钙化。它采用不同的结构元素来处理微钙化特征的多样性。基于结构相似度指数(SSIM)将得到的形态学图转换为连续怀疑图(SM)。然后使用超像素对新的语义表示图进行局部分析,以自动估计自适应阈值,并最终识别潜在的微钙化区域。使用公开的INBreast数据库对所提出的方法进行了评估。实验结果表明,与一些最先进的方法相比,该方法在提高微钙化检测性能方面取得了优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1