Data-driven comparison of spatio-temporal monitoring techniques

Jeffrey A. Caley, Geoffrey A. Hollinger
{"title":"Data-driven comparison of spatio-temporal monitoring techniques","authors":"Jeffrey A. Caley, Geoffrey A. Hollinger","doi":"10.23919/OCEANS.2015.7401988","DOIUrl":null,"url":null,"abstract":"Monitoring marine ecosystems is challenging due to the dynamic and unpredictable nature of environmental phenomena. In this work we survey a series of techniques used in information gathering that can be used to increase experts' understanding of marine ecosystems through dynamic monitoring. To achieve this, an underwater glider simulator is constructed, and four different path planning algorithms are investigated: Boustrophendon paths, a gradient based approach, a Level-Sets method, and Sequential Bayesian Optimization. Each planner attempts to maximize the time the glider spends in an area where ocean variables are above a threshold value of interest. To emulate marine ecosystem sensor data, ocean temperatures are used. The planners are simulated 50 times each at random starting times and locations. After validation through simulation, we show that informed decision making improves performance, but more accurate prediction of ocean conditions would be necessary to benefit from long horizon lookahead planning.","PeriodicalId":403976,"journal":{"name":"OCEANS 2015 - MTS/IEEE Washington","volume":"1206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2015 - MTS/IEEE Washington","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS.2015.7401988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Monitoring marine ecosystems is challenging due to the dynamic and unpredictable nature of environmental phenomena. In this work we survey a series of techniques used in information gathering that can be used to increase experts' understanding of marine ecosystems through dynamic monitoring. To achieve this, an underwater glider simulator is constructed, and four different path planning algorithms are investigated: Boustrophendon paths, a gradient based approach, a Level-Sets method, and Sequential Bayesian Optimization. Each planner attempts to maximize the time the glider spends in an area where ocean variables are above a threshold value of interest. To emulate marine ecosystem sensor data, ocean temperatures are used. The planners are simulated 50 times each at random starting times and locations. After validation through simulation, we show that informed decision making improves performance, but more accurate prediction of ocean conditions would be necessary to benefit from long horizon lookahead planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的时空监测技术比较
由于环境现象的动态性和不可预测性,监测海洋生态系统具有挑战性。在这项工作中,我们调查了一系列用于信息收集的技术,这些技术可用于通过动态监测增加专家对海洋生态系统的理解。为了实现这一目标,构建了一个水下滑滑机模拟器,并研究了四种不同的路径规划算法:Boustrophendon路径、基于梯度的方法、Level-Sets方法和顺序贝叶斯优化。每个计划者都试图使滑翔机在海洋变量高于感兴趣的阈值的区域内花费的时间最大化。为了模拟海洋生态系统传感器数据,使用了海洋温度。每个计划者在随机的开始时间和地点被模拟50次。通过模拟验证后,我们表明,明智的决策可以提高性能,但更准确的海洋状况预测对于从长远的前瞻性规划中受益是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of a RSI microstructure sensing package into a Seaglider Capacity analysis for broadband communications on sea A methodology to improve the assessment of vulnerability on the maritime supply chain of energy Detection of false AIS messages for the improvement of maritime situational awareness Automated point cloud correspondence detection for underwater mapping using AUVs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1