Experimental and Numerical Analysis of Performance of Oscillating Water Column Wave Energy Converter Applicable to Breakwaters

Sewan Park, Kyong-Hwan Kim, B. Nam, Jeong-Seok Kim, K. Hong
{"title":"Experimental and Numerical Analysis of Performance of Oscillating Water Column Wave Energy Converter Applicable to Breakwaters","authors":"Sewan Park, Kyong-Hwan Kim, B. Nam, Jeong-Seok Kim, K. Hong","doi":"10.1115/omae2019-96500","DOIUrl":null,"url":null,"abstract":"\n In the present study, the primary energy conversion performance of an oscillating water column (OWC) was evaluated through experimental tests and numerical simulations. The experimental tests were performed at an ocean basin located in Korea Research Institute of Ships and Ocean Engineering (KRISO), Korea. A 1/4 scaled OWC chamber model with an orifice to account for the turbine effect was set up at the 3-dimensional basin, and regular wave tests were performed at various incident wave periods. The water surface level inside the chamber, the differential pressure between before and after the orifice, and the airflow speed through the orifice were measured. Computational fluid dynamics (CFD) analysis was performed using the Star-CCM+ commercial software to analyze the performance of the OWC for the same model that was used in the experiment. Detailed flow fields were discussed based on the CFD results, and the numerical and experimental results were compared. The validation results showed good agreement.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the present study, the primary energy conversion performance of an oscillating water column (OWC) was evaluated through experimental tests and numerical simulations. The experimental tests were performed at an ocean basin located in Korea Research Institute of Ships and Ocean Engineering (KRISO), Korea. A 1/4 scaled OWC chamber model with an orifice to account for the turbine effect was set up at the 3-dimensional basin, and regular wave tests were performed at various incident wave periods. The water surface level inside the chamber, the differential pressure between before and after the orifice, and the airflow speed through the orifice were measured. Computational fluid dynamics (CFD) analysis was performed using the Star-CCM+ commercial software to analyze the performance of the OWC for the same model that was used in the experiment. Detailed flow fields were discussed based on the CFD results, and the numerical and experimental results were compared. The validation results showed good agreement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
适用于防波堤的振荡水柱波能转换器性能试验与数值分析
本文通过实验试验和数值模拟对振荡水柱的一次能量转换性能进行了评价。试验是在韩国船舶海洋工程研究院(KRISO)的海洋盆地进行的。在三维水池中建立了1/4比例的考虑涡轮效应的带孔口的OWC腔室模型,并在不同入射波周期下进行了常规波浪试验。测量了腔内的水面水平、孔板前后的压差和通过孔板的气流速度。使用Star-CCM+商业软件进行计算流体动力学(CFD)分析,分析实验中使用的相同模型的OWC的性能。在CFD计算结果的基础上对流场进行了详细的讨论,并对数值结果和实验结果进行了比较。验证结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FIV Energy Harvesting From Sharp-Edge Oscillators On Design and Analysis of a Drivetrain Test Rig for Wind Turbine Health Monitoring The Influence of Tidal Unsteadiness on a Tidal Turbine Blade Flow-Induced Vibration Learning a Predictionless Resonating Controller for Wave Energy Converters Performance of a Passive Tuned Liquid Column Damper for Floating Wind Turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1