Stochastic Synapse with Short-Term Depression for Silicon Neurons

Peng Xu, T. Horiuchi, A. Sarje, P. Abshire
{"title":"Stochastic Synapse with Short-Term Depression for Silicon Neurons","authors":"Peng Xu, T. Horiuchi, A. Sarje, P. Abshire","doi":"10.1109/BIOCAS.2007.4463318","DOIUrl":null,"url":null,"abstract":"We report a stochastic dynamical synapse for VLSI spiking neural systems. The compactness of the circuit, real-time stochastic behavior, and probability tuning make it well suitable to implement stochastic synapses with variety of dynamics. The stochastic synapse implements short-term depression (STD) using a subtractive single release model. Preliminary experimental results show a good match with theoretical predictions. The output from the stochastic synapse with STD has negative autocorrelation and lower power spectral density at low frequencies which can remove the information redundancy in the input spike train. The mean transmission probability is inversely proportional to the input spike rate which has been suggested as an automatic gain control mechanism in neural systems. The silicon stochastic synapse with plasticity could potentially be a powerful addition to existing deterministic VLSI spiking neural systems.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We report a stochastic dynamical synapse for VLSI spiking neural systems. The compactness of the circuit, real-time stochastic behavior, and probability tuning make it well suitable to implement stochastic synapses with variety of dynamics. The stochastic synapse implements short-term depression (STD) using a subtractive single release model. Preliminary experimental results show a good match with theoretical predictions. The output from the stochastic synapse with STD has negative autocorrelation and lower power spectral density at low frequencies which can remove the information redundancy in the input spike train. The mean transmission probability is inversely proportional to the input spike rate which has been suggested as an automatic gain control mechanism in neural systems. The silicon stochastic synapse with plasticity could potentially be a powerful addition to existing deterministic VLSI spiking neural systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅神经元短期抑制的随机突触
我们报道了VLSI脉冲神经系统的随机动态突触。电路的紧凑性、实时随机特性和概率可调性使其非常适合实现具有各种动态的随机突触。随机突触使用减法单释放模型实现短期抑制(STD)。初步实验结果与理论预测吻合较好。具有STD的随机突触的输出具有较低的低频功率谱密度和负自相关特性,可以消除输入尖峰序列中的信息冗余。平均传输概率与输入尖峰率成反比,这被认为是神经系统中的一种自动增益控制机制。具有可塑性的硅随机突触可能是现有确定性VLSI脉冲神经系统的强大补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breast Lesions Classification Using Modified Non-Recursive Discrete Biorthogonal Wavelet Transform Efficient Computation of the LF/HF Ratio in Heart Rate Variability Analysis Based on Bitstream Filtering On the Swept-threshold Sampling in UWB Medical Radar Long-term monitoring of electrochemical parameters from stimulated neural tissues A Mixed-Signal Multi-Chip Neural Recording Interface with Bandwidth Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1