Image-based control of satellite-mounted robot manipulators

Javier Pérez, J. Pomares, M. Reza Emami
{"title":"Image-based control of satellite-mounted robot manipulators","authors":"Javier Pérez, J. Pomares, M. Reza Emami","doi":"10.1109/ICMAE.2016.7549564","DOIUrl":null,"url":null,"abstract":"Robot manipulators have multiple uses and are especially useful when dealing with complex manipulation tasks in unstructured environments. This paper presents a direct image-based controller for performing the guidance of a free-floating robot manipulator. A camera is attached to the end-effector of the manipulator and the robot is attached to a base satellite. The proposed direct image-based control strategy computes the torque to be applied to the joints, and takes into account the system's kinematics and dynamics model. The operation is such that the base is completely free and floating in space with no attitude control, and thus freely reacting to the movements of the robot manipulator attached to it. The main objective is to track a desired trajectory in the image space with respect to an observed object in space. The proposed control strategy optimizes the motor commands with respect to a specified metric. The controller is applied to direct visual control of a four-degree-of-freedom robot manipulator.","PeriodicalId":371629,"journal":{"name":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMAE.2016.7549564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Robot manipulators have multiple uses and are especially useful when dealing with complex manipulation tasks in unstructured environments. This paper presents a direct image-based controller for performing the guidance of a free-floating robot manipulator. A camera is attached to the end-effector of the manipulator and the robot is attached to a base satellite. The proposed direct image-based control strategy computes the torque to be applied to the joints, and takes into account the system's kinematics and dynamics model. The operation is such that the base is completely free and floating in space with no attitude control, and thus freely reacting to the movements of the robot manipulator attached to it. The main objective is to track a desired trajectory in the image space with respect to an observed object in space. The proposed control strategy optimizes the motor commands with respect to a specified metric. The controller is applied to direct visual control of a four-degree-of-freedom robot manipulator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像的卫星机器人操纵器控制
机器人操作器具有多种用途,在处理非结构化环境中的复杂操作任务时尤其有用。本文提出了一种基于图像的直接控制器,用于对自由漂浮机器人机械手进行制导。相机连接在机械手的末端执行器上,机器人连接在基地卫星上。提出的基于图像的直接控制策略计算施加到关节上的扭矩,并考虑系统的运动学和动力学模型。在这种操作中,基座完全自由地漂浮在空间中,没有姿态控制,因此可以自由地对附着在其上的机器人机械手的运动做出反应。主要目标是在图像空间中相对于空间中观察到的物体跟踪所需的轨迹。所提出的控制策略根据指定的度量优化电机命令。将该控制器应用于四自由度机械臂的直接视觉控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D peak based long range rover localization Demonstrating a holographic memory having 100 Mrad total-ionizing-dose tolerance Coupling acoustic cavitation and solidification in the modeling of light alloy melt ultrasonic treatment Dynamic analysis of vibration casting equipment Experimental study on internal flowfield characteristics and start-unstart behaviour in a two-dimensional variable geometry inlet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1