Shape recognition by distributed recursive learning of multiscale trees

L. Lombardi, A. Petrosino
{"title":"Shape recognition by distributed recursive learning of multiscale trees","authors":"L. Lombardi, A. Petrosino","doi":"10.1109/ICIAP.2003.1234020","DOIUrl":null,"url":null,"abstract":"We present an efficient and fully parallel 2D object recognition method based on the use of a multiscale tree representation of the object boundary and recursive learning of trees. Specifically, the object is represented by means of a tree where each node, corresponding to a boundary segment at some level of resolution, is characterized by a real vector containing curvature, length, and symmetry of the boundary segment, while the nodes are connected by arcs when segments at successive levels are spatially related. The recognition procedure is formulated as a training procedure made by recursive neural networks followed by a testing procedure over unknown tree structured patterns.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an efficient and fully parallel 2D object recognition method based on the use of a multiscale tree representation of the object boundary and recursive learning of trees. Specifically, the object is represented by means of a tree where each node, corresponding to a boundary segment at some level of resolution, is characterized by a real vector containing curvature, length, and symmetry of the boundary segment, while the nodes are connected by arcs when segments at successive levels are spatially related. The recognition procedure is formulated as a training procedure made by recursive neural networks followed by a testing procedure over unknown tree structured patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度树分布递归学习的形状识别
我们提出了一种基于物体边界的多尺度树表示和树的递归学习的高效且完全并行的二维物体识别方法。具体来说,对象通过树表示,其中每个节点对应于某个分辨率级别的边界段,其特征是包含边界段的曲率、长度和对称性的实向量,而当连续级别的段在空间上相关时,节点通过弧连接。识别过程是由递归神经网络进行的训练过程,然后是未知树结构模式的测试过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1