High Accuracy Epileptic Seizure Detection System Based on Wearable Devices Using Support Vector Machine Classifier

Mohamed Fawzy, H. Mostafa
{"title":"High Accuracy Epileptic Seizure Detection System Based on Wearable Devices Using Support Vector Machine Classifier","authors":"Mohamed Fawzy, H. Mostafa","doi":"10.1109/ICM52667.2021.9664898","DOIUrl":null,"url":null,"abstract":"This paper aims to develop an efficient and reliable epileptic seizure detection system based on different wearable devices using support vector machine (SVM) classification. The proposed seizure detection system achieves Seizure detection results show that our algorithm achieving an average sensitivity of 100% and an average accuracy 97% with proposed different combining methods for the signals of wearable devices.","PeriodicalId":212613,"journal":{"name":"2021 International Conference on Microelectronics (ICM)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM52667.2021.9664898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper aims to develop an efficient and reliable epileptic seizure detection system based on different wearable devices using support vector machine (SVM) classification. The proposed seizure detection system achieves Seizure detection results show that our algorithm achieving an average sensitivity of 100% and an average accuracy 97% with proposed different combining methods for the signals of wearable devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可穿戴设备的支持向量机分类器高精度癫痫发作检测系统
本文旨在利用支持向量机(support vector machine, SVM)分类,开发一种基于不同可穿戴设备的高效可靠的癫痫发作检测系统。实验结果表明,针对可穿戴设备的不同信号组合方式,本文算法的平均灵敏度为100%,平均准确率为97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Implementation of Yolov4-tiny for Object Detection Comparative Study of Different Activation Functions for Anomalous Sound Detection Speed Up Functional Coverage Closure of CORDIC Designs Using Machine Learning Models Lightweight Image Encryption: Cellular Automata and the Lorenz System Double Gate TFET with Germanium Pocket and Metal drain using Dual Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1