Estimating hourly marginal emission in real time for PJM market area using a machine learning approach

Caisheng Wang, Yang Wang, Carol J. Miller, Jeremy Lin
{"title":"Estimating hourly marginal emission in real time for PJM market area using a machine learning approach","authors":"Caisheng Wang, Yang Wang, Carol J. Miller, Jeremy Lin","doi":"10.1109/PESGM.2016.7741759","DOIUrl":null,"url":null,"abstract":"There has been no marginal emission information and/or marginal fuel mix data published by the regional transmission organizations (RTOs) or independent system operators (ISOs) in real-time. This paper presents a support vector machine (SVM) based method to estimate and predict hourly marginal emissions and marginal fuel mix in real-time in the PJM market area. Input to our SVM-based model includes a variety of publicly available data including the real-time locational marginal prices (LMPs), load demand, wind generation, historical marginal fuel data, and other information (such as day of the week and holidays). The results from the SVM are compared with real data from the years 2014 and 2015.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Power and Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2016.7741759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

There has been no marginal emission information and/or marginal fuel mix data published by the regional transmission organizations (RTOs) or independent system operators (ISOs) in real-time. This paper presents a support vector machine (SVM) based method to estimate and predict hourly marginal emissions and marginal fuel mix in real-time in the PJM market area. Input to our SVM-based model includes a variety of publicly available data including the real-time locational marginal prices (LMPs), load demand, wind generation, historical marginal fuel data, and other information (such as day of the week and holidays). The results from the SVM are compared with real data from the years 2014 and 2015.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习方法实时估计PJM市场区域的每小时边际排放量
区域输电组织(rto)或独立系统运营商(iso)没有实时发布边际排放信息和/或边际燃料混合数据。本文提出了一种基于支持向量机(SVM)的PJM市场区域小时边际排放和边际燃料混合实时估计和预测方法。输入到我们基于支持向量机的模型中,包括各种公开可用的数据,包括实时位置边际价格(LMPs)、负载需求、风力发电、历史边际燃料数据和其他信息(如星期几和节假日)。将SVM结果与2014年和2015年的实际数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A laboratory experiment of single machine synchronous islanding using PMUs and Raspberry Pi — A platform for multi-machine islanding Distributed vs. concentrated rapid frequency response provision in future great britain system Analysis of IEEE C37.118 and IEC 61850-90-5 synchrophasor communication frameworks A Review of probabilistic methods for defining reserve requirements DC fault protection strategy considering DC network partition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1