Optimizing Rate-Distortion Performance of Motion Compensated Wavelet Lifting with Denoised Prediction and Update

Daniela Lanz, A. Kaup
{"title":"Optimizing Rate-Distortion Performance of Motion Compensated Wavelet Lifting with Denoised Prediction and Update","authors":"Daniela Lanz, A. Kaup","doi":"10.1109/MMSP48831.2020.9287070","DOIUrl":null,"url":null,"abstract":"Efficient lossless coding of medical volume data with temporal axis can be achieved by motion compensated wavelet lifting. As side benefit, a scalable bit stream is generated, which allows for displaying the data at different resolution layers, highly demanded for telemedicine applications. Additionally, the similarity of the temporal base layer to the input sequence is preserved by the use of motion compensated temporal filtering. However, for medical sequences the overall rate is increased due to the specific noise characteristics of the data. The use of denoising filters inside the lifting structure can improve the compression efficiency significantly without endangering the property of perfect reconstruction. However, the design of an optimum filter is a crucial task. In this paper, we present a new method for selecting the optimal filter strength for a certain denoising filter in a rate-distortion sense. This allows to minimize the required rate based on a single input parameter for the encoder to control the requested distortion of the temporal base layer.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient lossless coding of medical volume data with temporal axis can be achieved by motion compensated wavelet lifting. As side benefit, a scalable bit stream is generated, which allows for displaying the data at different resolution layers, highly demanded for telemedicine applications. Additionally, the similarity of the temporal base layer to the input sequence is preserved by the use of motion compensated temporal filtering. However, for medical sequences the overall rate is increased due to the specific noise characteristics of the data. The use of denoising filters inside the lifting structure can improve the compression efficiency significantly without endangering the property of perfect reconstruction. However, the design of an optimum filter is a crucial task. In this paper, we present a new method for selecting the optimal filter strength for a certain denoising filter in a rate-distortion sense. This allows to minimize the required rate based on a single input parameter for the encoder to control the requested distortion of the temporal base layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于去噪预测和更新的运动补偿小波提升率失真性能优化
采用运动补偿小波提升的方法,可以实现具有时间轴的医学体数据的高效无损编码。附带的好处是,生成了一个可扩展的比特流,允许以不同的分辨率层显示数据,这是远程医疗应用非常需要的。此外,通过使用运动补偿时间滤波来保持时间基层与输入序列的相似性。然而,对于医疗序列,由于数据的特定噪声特性,总体速率增加。在提升结构内部使用去噪滤波器,可以在不影响完美重构性能的前提下显著提高压缩效率。然而,优化滤波器的设计是一项至关重要的任务。本文提出了一种在率失真情况下对某一去噪滤波器选择最优滤波强度的新方法。这允许基于编码器的单个输入参数最小化所需的速率,以控制时间基层的请求失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Active Perception for Improving Embedding-based Deep Face Recognition Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality The Suitability of Texture Vibrations Based on Visually Perceived Virtual Textures in Bimodal and Trimodal Conditions DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1