Multi-scale shift local binary pattern based-descriptor for finger-knuckle-print recognition

Wafa El-Tarhouni, M. Shaikh, L. Boubchir, A. Bouridane
{"title":"Multi-scale shift local binary pattern based-descriptor for finger-knuckle-print recognition","authors":"Wafa El-Tarhouni, M. Shaikh, L. Boubchir, A. Bouridane","doi":"10.1109/ICM.2014.7071837","DOIUrl":null,"url":null,"abstract":"Local Binary Pattern (LBP) has been widely used for analyzing local texture features of an image. Several new extensions of LBP based texture descriptors have been proposed, focusing on improving the robustness to noise by using different encoding or thresholding schemes where the most widely known are Median Binary Patterns (MBP), Fuzzy LBP (FLBP), Local Quantized Patterns (LQP), and Shift LBP (SLBP). LBP based descriptors are rarely applied in Finger-Knuckle-Print (FKP) recognition and especially, SLBP-based descriptors has not been reported yet. In this paper we propose using the Multi-scale Shift Binary Pattern (MSLBP) descriptor which extends the original SLBP to multi-scale to get more robust and discriminative representation of FKP features. The classification of this new proposed feature is performed by using Principle Component Analysis and Random subspace Linear Discriminant Analysis and the results suggest that they outperform other classifiers in FKP recognition. Experiments are performed using the PolyU FKP database and the results obtained have shown that the proposed FKP recognition method achieves outstanding rank-1 recognition rate up to 95% compared to the state-of-the-art FKP approaches.","PeriodicalId":107354,"journal":{"name":"2014 26th International Conference on Microelectronics (ICM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 26th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2014.7071837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Local Binary Pattern (LBP) has been widely used for analyzing local texture features of an image. Several new extensions of LBP based texture descriptors have been proposed, focusing on improving the robustness to noise by using different encoding or thresholding schemes where the most widely known are Median Binary Patterns (MBP), Fuzzy LBP (FLBP), Local Quantized Patterns (LQP), and Shift LBP (SLBP). LBP based descriptors are rarely applied in Finger-Knuckle-Print (FKP) recognition and especially, SLBP-based descriptors has not been reported yet. In this paper we propose using the Multi-scale Shift Binary Pattern (MSLBP) descriptor which extends the original SLBP to multi-scale to get more robust and discriminative representation of FKP features. The classification of this new proposed feature is performed by using Principle Component Analysis and Random subspace Linear Discriminant Analysis and the results suggest that they outperform other classifiers in FKP recognition. Experiments are performed using the PolyU FKP database and the results obtained have shown that the proposed FKP recognition method achieves outstanding rank-1 recognition rate up to 95% compared to the state-of-the-art FKP approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度移位局部二值模式的指关节指纹识别描述符
局部二值模式(LBP)被广泛用于分析图像的局部纹理特征。基于LBP的纹理描述符已经提出了几个新的扩展,重点是通过使用不同的编码或阈值方案来提高对噪声的鲁棒性,其中最广为人知的是中值二值模式(MBP),模糊LBP (FLBP),局部量化模式(LQP)和移位LBP (SLBP)。基于LBP的描述符很少应用于指关节指纹识别,特别是基于slbp的描述符尚未见报道。本文提出使用多尺度位移二值模式(MSLBP)描述符,将原始的SLBP扩展到多尺度,以获得更鲁棒和判别的FKP特征表示。利用主成分分析和随机子空间线性判别分析对新提出的特征进行分类,结果表明它们在FKP识别中优于其他分类器。利用理大的FKP数据库进行实验,结果表明,与目前最先进的FKP方法相比,所提出的FKP识别方法的一级识别率高达95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Haralick features for GEI-based human gait recognition Haralick feature extraction from time-frequency images for epileptic seizure detection and classification of EEG data LVDS receiver with 7mW consumption at 1.5 Gbps Concatenation of dictionaries for recovery of ECG signals using compressed sensing techniques Effect of device, size, activation energy, temperature, and frequency on memristor switching time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1