{"title":"Fingerprint identification with LVQ","authors":"G. A. Khuwaja","doi":"10.1109/ICONIP.2002.1198199","DOIUrl":null,"url":null,"abstract":"Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capability to reliably distinguish between an authorized person and an imposter. This paper presents a high speed and low cost system for identification of fingerprints based on adaptive learning vector quantization neural network. The inkless images are acquired for this purpose using a digital still camera.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capability to reliably distinguish between an authorized person and an imposter. This paper presents a high speed and low cost system for identification of fingerprints based on adaptive learning vector quantization neural network. The inkless images are acquired for this purpose using a digital still camera.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LVQ指纹识别
生物识别技术是指根据个人的生理或行为特征来识别个人,它能够可靠地区分授权人员和冒名顶替者。提出了一种基于自适应学习向量量化神经网络的高速低成本指纹识别系统。无墨图像是为此目的使用数码静止相机获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1