LuxIO: Intelligent Resource Provisioning and Auto-Configuration for Storage Services

Keith Bateman, N. Rajesh, Jaime Cernuda Garcia, Luke Logan, Jie Ye, Stephen Herbein, Anthony Kougkas, Xian-He Sun
{"title":"LuxIO: Intelligent Resource Provisioning and Auto-Configuration for Storage Services","authors":"Keith Bateman, N. Rajesh, Jaime Cernuda Garcia, Luke Logan, Jie Ye, Stephen Herbein, Anthony Kougkas, Xian-He Sun","doi":"10.1109/HiPC56025.2022.00041","DOIUrl":null,"url":null,"abstract":"Storage in HPC is typically a single Remote and Static Storage (RSS) resource. However, applications demonstrate diverse I/O requirements that can be better served by a multi-storage approach. Current practice employs ephemeral storage systems running on either node-local or shared storage resources. Yet, the burden of provisioning and configuring intermediate storage falls solely on the users, while global job schedulers offer little to no support for custom deployments. This lack of support often leads to over- or under-provisioning of resources and poorly configured storage systems. To mitigate this, we present LuxIO, an intelligent storage resource provisioning and auto-configuration service. LuxIO constructs storage deployments configured to best match I/O requirements. LuxIO-tuned storage services show performance improvements up to 2× across common applications and benchmarks, while introducing minimal overhead of 93.40 ms on top of existing job scheduling pipelines. LuxIO improves resource utilization by up to 25% in select workflows.","PeriodicalId":119363,"journal":{"name":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC56025.2022.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Storage in HPC is typically a single Remote and Static Storage (RSS) resource. However, applications demonstrate diverse I/O requirements that can be better served by a multi-storage approach. Current practice employs ephemeral storage systems running on either node-local or shared storage resources. Yet, the burden of provisioning and configuring intermediate storage falls solely on the users, while global job schedulers offer little to no support for custom deployments. This lack of support often leads to over- or under-provisioning of resources and poorly configured storage systems. To mitigate this, we present LuxIO, an intelligent storage resource provisioning and auto-configuration service. LuxIO constructs storage deployments configured to best match I/O requirements. LuxIO-tuned storage services show performance improvements up to 2× across common applications and benchmarks, while introducing minimal overhead of 93.40 ms on top of existing job scheduling pipelines. LuxIO improves resource utilization by up to 25% in select workflows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LuxIO:智能资源发放和存储服务自动配置
HPC中的存储通常是单个远程和静态存储(RSS)资源。然而,应用程序展示了不同的I/O需求,多存储方法可以更好地满足这些需求。当前的实践使用运行在节点本地或共享存储资源上的临时存储系统。然而,供应和配置中间存储的负担完全落在用户身上,而全局作业调度器对自定义部署几乎没有支持。这种支持的缺乏通常会导致资源供应过剩或不足,以及存储系统配置不当。为了缓解这种情况,我们提出了LuxIO,这是一种智能存储资源供应和自动配置服务。LuxIO构建的存储部署配置为最好地匹配I/O需求。经过luxio调优的存储服务在常见应用程序和基准测试中显示了高达2倍的性能改进,同时在现有作业调度管道上引入了93.40 ms的最小开销。在选定的工作流中,LuxIO将资源利用率提高了25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HiPC 2022 Technical Program Committee A Deep Learning-Based In Situ Analysis Framework for Tropical Cyclogenesis Prediction COMPROF and COMPLACE: Shared-Memory Communication Profiling and Automated Thread Placement via Dynamic Binary Instrumentation Message from the HiPC 2022 General Co-Chairs Efficient Personalized and Non-Personalized Alltoall Communication for Modern Multi-HCA GPU-Based Clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1