Guiding deep brain stimulation contact selection using local field potentials sensed by a chronically implanted device in Parkinson's disease patients

Allison T. Connolly, W. Kaemmerer, Siddharth Dani, S. Stanslaski, E. Panken, Matthew D. Johnson, T. Denison
{"title":"Guiding deep brain stimulation contact selection using local field potentials sensed by a chronically implanted device in Parkinson's disease patients","authors":"Allison T. Connolly, W. Kaemmerer, Siddharth Dani, S. Stanslaski, E. Panken, Matthew D. Johnson, T. Denison","doi":"10.1109/NER.2015.7146754","DOIUrl":null,"url":null,"abstract":"We have found that a set of support vector machines operating upon local field potentials sensed from an implanted DBS lead can identify the contact chosen by the physician for the patient's STN DBS therapy with 91% accuracy. The finding is based on a small data set and thus subject to change with further data collection and cross-validation. Nevertheless, the results suggest that an algorithm for selecting an effective contact for STN DBS based on the signals sensed from the DBS lead may be feasible.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We have found that a set of support vector machines operating upon local field potentials sensed from an implanted DBS lead can identify the contact chosen by the physician for the patient's STN DBS therapy with 91% accuracy. The finding is based on a small data set and thus subject to change with further data collection and cross-validation. Nevertheless, the results suggest that an algorithm for selecting an effective contact for STN DBS based on the signals sensed from the DBS lead may be feasible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长期植入装置感应局部场电位引导帕金森病患者深部脑刺激接触选择
我们发现,一组支持向量机对植入DBS导线感应到的局部场电位进行操作,可以识别医生为患者STN DBS治疗选择的接触点,准确率为91%。这一发现是基于一个小数据集,因此可能会随着进一步的数据收集和交叉验证而改变。然而,结果表明,基于从DBS引线感应到的信号选择STN DBS有效触点的算法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iNODE in-vivo testing for selective vagus nerve recording and stimulation Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity Fast calibration of a thirteen-command BCI by simulating SSVEPs from trains of transient VEPs - towards time-domain SSVEP BCI paradigms A hybrid NMES-exoskeleton for real objects interaction Computationally efficient, configurable, causal, real-time phase detection applied to local field potential oscillations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1