TAREEG: a MapReduce-based system for extracting spatial data from OpenStreetMap

Louai Alarabi, A. Eldawy, Rami Alghamdi, M. Mokbel
{"title":"TAREEG: a MapReduce-based system for extracting spatial data from OpenStreetMap","authors":"Louai Alarabi, A. Eldawy, Rami Alghamdi, M. Mokbel","doi":"10.1145/2666310.2666403","DOIUrl":null,"url":null,"abstract":"Real spatial data, e.g., detailed road networks, rivers, buildings, parks, are not easily available for most of the world. This hinders the practicality of many research ideas that need a real spatial data for testing and experiments. Such data is often available for governmental use, or at major software companies, but it is prohibitively expensive to build or buy for academia or individual researchers. This paper presents TAREEG; a web-service that makes real spatial data, from anywhere in the world, available at the fingertips of every researcher or individual. TAREEG gets all its data by leveraging the richness of OpenStreetMap data set; the most comprehensive available spatial data of the world. Yet, it is still challenging to obtain OpenStreetMap data due to the size limitations, special data format, and the noisy nature of spatial data. TAREEG employs MapReduce-based techniques to make it efficient and easy to extract OpenStreetMap data in a standard form with minimal effort. Experimental results show that TAREEG is highly accurate and efficient.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Real spatial data, e.g., detailed road networks, rivers, buildings, parks, are not easily available for most of the world. This hinders the practicality of many research ideas that need a real spatial data for testing and experiments. Such data is often available for governmental use, or at major software companies, but it is prohibitively expensive to build or buy for academia or individual researchers. This paper presents TAREEG; a web-service that makes real spatial data, from anywhere in the world, available at the fingertips of every researcher or individual. TAREEG gets all its data by leveraging the richness of OpenStreetMap data set; the most comprehensive available spatial data of the world. Yet, it is still challenging to obtain OpenStreetMap data due to the size limitations, special data format, and the noisy nature of spatial data. TAREEG employs MapReduce-based techniques to make it efficient and easy to extract OpenStreetMap data in a standard form with minimal effort. Experimental results show that TAREEG is highly accurate and efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TAREEG:一个基于mapreduce的系统,用于从OpenStreetMap中提取空间数据
真实的空间数据,如详细的道路网络、河流、建筑、公园,在世界上大部分地区都不容易获得。这阻碍了许多需要真实空间数据进行测试和实验的研究思路的实用性。这些数据通常可供政府或大型软件公司使用,但对于学术界或个人研究人员来说,构建或购买这些数据的成本过高。本文介绍了TAREEG;一个网络服务,使真实的空间数据,从世界上任何地方,在每个研究人员或个人的指尖可用。TAREEG通过利用OpenStreetMap数据集的丰富性获得所有数据;世界上最全面的可用空间数据。然而,由于空间数据的大小限制、特殊的数据格式和噪声特性,获取OpenStreetMap数据仍然具有挑战性。TAREEG采用基于mapreduce的技术,使其以最小的努力以标准形式提取OpenStreetMap数据变得高效和容易。实验结果表明,TAREEG具有较高的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A parallel query engine for interactive spatiotemporal analysis Spatio-temporal trajectory simplification for inferring travel paths Parameterized spatial query processing based on social probabilistic clustering Accurate and efficient map matching for challenging environments Top-k point of interest retrieval using standard indexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1