Hyperparameters Adaptive Sharing Based on Transfer Learning for Scalable GPs

Caie Hu, Sanyou Zeng, Changhe Li
{"title":"Hyperparameters Adaptive Sharing Based on Transfer Learning for Scalable GPs","authors":"Caie Hu, Sanyou Zeng, Changhe Li","doi":"10.1109/CEC55065.2022.9870288","DOIUrl":null,"url":null,"abstract":"Gaussian processes (GPs) are a kind of non-parametric Bayesian approach. They are widely used as surrogate models in data-driven optimization to approximate the exact functions. However, the cubic computation complexity is involved in building GPs. This paper proposes hyperparameters adaptive sharing based on transfer learning for scalable GPs to address the limitation. In this method, the hyperparameters across source tasks are adaptively shared to the target task by the linear predictor. This method can reduce the computation cost of building GPs without losing capability based on experimental analyses. The method's effectiveness is demonstrated on a set of benchmark problems.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gaussian processes (GPs) are a kind of non-parametric Bayesian approach. They are widely used as surrogate models in data-driven optimization to approximate the exact functions. However, the cubic computation complexity is involved in building GPs. This paper proposes hyperparameters adaptive sharing based on transfer learning for scalable GPs to address the limitation. In this method, the hyperparameters across source tasks are adaptively shared to the target task by the linear predictor. This method can reduce the computation cost of building GPs without losing capability based on experimental analyses. The method's effectiveness is demonstrated on a set of benchmark problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迁移学习的可扩展GPs超参数自适应共享
高斯过程是一种非参数贝叶斯方法。它们被广泛用作数据驱动优化中的代理模型,以近似准确的函数。然而,GPs的构建涉及到三次计算复杂度。本文提出了一种基于迁移学习的超参数自适应共享方法来解决这一问题。该方法通过线性预测器自适应地将源任务间的超参数共享给目标任务。实验分析表明,该方法在不损失GPs构建能力的前提下,降低了GPs构建的计算成本。在一组基准问题上验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1