Learning complex robot control using evolutionary behavior based systems

Y. Kassahun, J. Schwendner, J. Gea, M. Edgington, F. Kirchner
{"title":"Learning complex robot control using evolutionary behavior based systems","authors":"Y. Kassahun, J. Schwendner, J. Gea, M. Edgington, F. Kirchner","doi":"10.1145/1569901.1569920","DOIUrl":null,"url":null,"abstract":"Evolving a monolithic solution for complex robotic problems is hard. One of the reasons for this is the difficulty of defining a global fitness function that leads to a solution with desired operating properties. The problem with a global fitness function is that it may not reward intermediate solutions that would ultimately lead to the desired operating properties. A possible way to solve such a problem is to decompose the solution space into smaller subsolutions with lower number of intrinsic dimensions. In this paper, we apply the design principles of behavior based systems to decompose a complex robot control task into subsolutions and show how to incrementally modify the fitness function that (1) results in desired operating properties as the subsolutions are learned, and (2) avoids the need to learn the coordination of behaviors separately. We demonstrate our method by learning to control a quadrocopter flying vehicle.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Evolving a monolithic solution for complex robotic problems is hard. One of the reasons for this is the difficulty of defining a global fitness function that leads to a solution with desired operating properties. The problem with a global fitness function is that it may not reward intermediate solutions that would ultimately lead to the desired operating properties. A possible way to solve such a problem is to decompose the solution space into smaller subsolutions with lower number of intrinsic dimensions. In this paper, we apply the design principles of behavior based systems to decompose a complex robot control task into subsolutions and show how to incrementally modify the fitness function that (1) results in desired operating properties as the subsolutions are learned, and (2) avoids the need to learn the coordination of behaviors separately. We demonstrate our method by learning to control a quadrocopter flying vehicle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于进化行为的系统学习复杂机器人控制
为复杂的机器人问题发展一个单一的解决方案是困难的。造成这种情况的原因之一是很难定义一个全局适应度函数,从而导致具有所需操作属性的解决方案。全局适应度函数的问题在于,它可能不会奖励最终会导致期望的操作属性的中间解决方案。解决这类问题的一种可能方法是将解空间分解为具有更少内在维数的更小的子解。在本文中,我们应用基于行为系统的设计原则将复杂的机器人控制任务分解为子解,并展示了如何增量修改适应度函数,从而(1)随着子解的学习产生期望的操作属性,(2)避免了单独学习行为协调的需要。我们通过学习控制四旋翼飞行器来演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1