{"title":"Compact Multi-beam Antennas for Full-azimuth and Hemispherical Scan Coverage","authors":"Yury G. Pasternak, V. Pendyurin, S. Fedorov","doi":"10.1109/piers55526.2022.9792907","DOIUrl":null,"url":null,"abstract":"This paper presents the results of numerical electrodynamic simulation of multi-beam antenna systems for full-azimuth and hemispherical scan coverage operating in the frequency range of 27–29GHz. Both antennas can be manufactured using multilayer PCB technology. Antenna system for full-azimuth scan coverage can form 16 beams with directivity about 10–11dBi. The hemispherical antenna has a minimum gain in azimuthal plane of 4dBi and a maximum gain of about 9.5dBi. The polarization of this antenna can be arbitrary and is determined by the type of feeds of the metamaterial lens.","PeriodicalId":422383,"journal":{"name":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/piers55526.2022.9792907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the results of numerical electrodynamic simulation of multi-beam antenna systems for full-azimuth and hemispherical scan coverage operating in the frequency range of 27–29GHz. Both antennas can be manufactured using multilayer PCB technology. Antenna system for full-azimuth scan coverage can form 16 beams with directivity about 10–11dBi. The hemispherical antenna has a minimum gain in azimuthal plane of 4dBi and a maximum gain of about 9.5dBi. The polarization of this antenna can be arbitrary and is determined by the type of feeds of the metamaterial lens.